MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

Lecture 31.55:

Nonlinear problems

Part 2: Newton's method for PDEs

The minimal surface equation

Goal: Solve

$$
-\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=f \quad \Leftrightarrow \quad \underbrace{f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)}_{=: R(u)}=0
$$

Newton's method: Iterate

$$
\left[R^{\prime}\left(u_{k}\right)\right] \delta u_{k}=-R\left(u_{k}\right), \quad u_{k+1}=u_{k}+\delta u_{k}
$$

Questions:

- What is the variational formulation of this?
- What is $R^{\prime}(u)$ anyway?

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Answer, part 1: Start with $R(u)$:

$$
R(u):=f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

This is an operator that maps

$$
R: u \in H_{0}^{1} \rightarrow H^{-1}
$$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Answer, part 2: Start with $R(u)$:

$$
R(u):=f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

Then use the definition of a directional derivative:

$$
R^{\prime}(u)(\delta u):=\lim _{\epsilon \rightarrow 0} \frac{R(u+\epsilon \delta u)-R(u)}{\epsilon}
$$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Answer, part 3: Now we need to do some scary calculus:

$$
\begin{aligned}
R^{\prime}(u)(\delta u) & :=\lim _{\epsilon \rightarrow 0} \frac{R(u+\epsilon \delta u)-R(u)}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left(f+\nabla \cdot\left(A \frac{\nabla(u+\epsilon \delta u)}{\sqrt{1+|\nabla(u+\epsilon \delta u)|^{2}}}\right)\right)-\left(f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)\right)\right] \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\nabla \cdot A\left(\frac{\nabla(u+\epsilon \delta u)}{\sqrt{1+\mid \nabla(u+\epsilon \delta u)^{2}}}-\frac{\nabla u}{\left.\sqrt{1+|\nabla u|^{2}}\right)}\right]\right.
\end{aligned}
$$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Answer, part 3: Now we need to do some scary calculus:

$$
R^{\prime}(u)(\delta u):=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\nabla \cdot A\left(\frac{\nabla(u+\epsilon \delta u)}{\sqrt{1+|\nabla(u+\epsilon \delta u)|^{2}}}-\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)\right]
$$

We need to do a Taylor expansion on a term of the form

$$
f(\epsilon)=\frac{x+\epsilon y}{\sqrt{1+(x+\epsilon y)^{2}}}=\frac{x}{\sqrt{1+x^{2}}}+\left(\frac{y}{\sqrt{1+x^{2}}}-\frac{x^{2} y}{\left(1+x^{2}\right)^{3 / 2}}\right) \epsilon+O\left(\epsilon^{2}\right)
$$

This yields:

$$
R^{\prime}(u)(\delta u):=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\nabla \cdot A\left(\frac{\nabla \epsilon \delta u}{\sqrt{1+|\nabla u|^{2}}}-\frac{(\nabla u \cdot \nabla \epsilon \delta u) \nabla u}{\left(1+|\nabla u|^{2 / 2}\right)^{2}}\right)+O\left(\epsilon^{2}\right)\right]
$$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Answer, part 3: After this step...

$$
R^{\prime}(u)(\delta u):=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\nabla \cdot A\left(\frac{\nabla \epsilon \delta u}{\sqrt{1+|\nabla u|^{2}}}-\frac{(\nabla u \cdot \nabla \epsilon \delta u) \nabla u}{\left(1+|\nabla u|^{2}\right)^{3 / 2}}\right)+O\left(\epsilon^{2}\right)\right]
$$

... all we need to do is take the limit:

$$
R^{\prime}(u)(\delta u):=\nabla \cdot\left(A \frac{\nabla \delta u}{\sqrt{1+|\nabla u|^{2}}}-A \frac{(\nabla u \cdot \nabla \delta u) \nabla u}{\left(1+|\nabla u|^{3 / 2}\right)^{3 / 2}}\right)
$$

This operator is linear in the direction δu in which we take the derivative!

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Short answer: Really, taking derivatives of things like

$$
R(u):=f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

... works almost like taking normal derivatives. You just always have to provide the direction δu !

Derivatives for operators

Examples:

- $F(u)=a u \quad \Rightarrow \quad F^{\prime}(u)(\delta u)=a \delta u$
- $\quad F(u)=u^{2} \Rightarrow F^{\prime}(u)(\delta u)=2 u \delta u$
- $\quad F(u)=(\nabla u)^{2} \Rightarrow F^{\prime}(u)(\delta u)=2(\nabla u) \cdot(\nabla \delta u)$
- $F(u)=\frac{1}{1+(\nabla u)^{2}} \Rightarrow F^{\prime}(u)(\delta u)=-\frac{1}{\left(1+(\nabla u)^{2}\right)^{2}}(2 \nabla u \cdot \nabla \delta u)$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Short answer: Really, taking derivatives of things like

$$
R(u):=f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

... works almost like taking normal derivatives:

$$
R^{\prime}(u)(\delta u):=\nabla \cdot\left(A \frac{\nabla \delta u}{\sqrt{1+|\nabla u|^{2}}}-A \frac{(\nabla u \cdot \nabla \delta u) \nabla u}{\left(1+|\nabla u|^{23 / 2}\right.}\right)
$$

Derivatives for operators

Question: What is $R^{\prime}(u)$?

Some more theory:

- We call $R^{\prime}(u)(\delta u)$ the Gateaux differential of R at u in direction δu.
- If $R^{\prime}(u)(\delta u)$ exists for all δu then we say that R is Gateaux differentiable at u.
- Under certain conditions (linearity, continuity, ...) we can define a linear operator $R^{\prime}(u)$ and then we can write

$$
R^{\prime}(u)(\delta u)=R^{\prime}(u) \delta u
$$

The minimal surface equation

Goal: Solve

$$
-\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=f \quad \Leftrightarrow \quad \underbrace{f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)}_{=: R(u)}=0
$$

Newton's method: Iterate

$$
\left[R^{\prime}\left(u_{k}\right)\right] \delta u_{k}=-R\left(u_{k}\right), \quad u_{k+1}=u_{k}+\delta u_{k}
$$

Questions:

- What is the variational formulation of this?
- What is $R^{\prime}(u)$ anyway?

Newton's method for PDEs

Question: What is the variational formulation of

$$
\left[R^{\prime}\left(u_{k}\right)\right] \delta u_{k}=-R\left(u_{k}\right), \quad u_{k+1}=u_{k}+\delta u_{k}
$$

Answer: With...

$$
R(u):=f+\nabla \cdot\left(A \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

...we get:

$$
R^{\prime}(u)(\delta u):=\nabla \cdot\left(A \frac{\nabla \delta u}{\sqrt{1+|\nabla u|^{2}}}-A \frac{(\nabla u \cdot \nabla \delta u) \nabla u}{\left(1+|\nabla u|^{23 / 2}\right.}\right)
$$

Newton's method for PDEs

Question: What is the variational formulation of

$$
\left[R^{\prime}\left(u_{k}\right)\right] \delta u_{k}=-R\left(u_{k}\right), \quad u_{k+1}=u_{k}+\delta u_{k}
$$

Answer: With...

$$
\begin{aligned}
\left(\phi, R^{\prime}\left(u_{k}\right)\left(\delta u_{k}\right)\right) & :=\left(\nabla \phi, \frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla \delta u_{k}\right)-\left(\nabla \phi, \frac{A\left(\nabla u_{k} \cdot \nabla \delta u_{k}\right)}{\left(1+\left|\nabla u_{k}\right|^{2}\right)^{3 / 2}} \nabla u_{k}\right) \\
\left(\phi, R\left(u_{k}\right)\right) & :=(\phi, f)+\left(\nabla \phi, \frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k}\right)
\end{aligned}
$$

...we arrive at this in each Newton step:

$$
\begin{aligned}
\left(\nabla \phi, \frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla \delta u_{k}\right)-(\nabla \phi & \left.\frac{A\left(\nabla u_{k} \cdot \nabla \delta u_{k}\right)}{\left(1+\left|\nabla u_{k}\right|^{2}\right)^{3 / 2}} \nabla u_{k}\right) \\
& =-(\phi, f)-\left(\nabla \phi, \frac{A}{\sqrt{1+\left|\nabla u_{k}\right|^{2}}} \nabla u_{k}\right) \quad \forall \phi \in H_{0}^{1}
\end{aligned}
$$

Practical considerations

Question: What if $R(u)$ is already really complicated?

Answer 1: Then your $R^{\prime}(u)$ will be even more complicated. You will probably make mistakes calculating it, or implementing it.

Practical considerations

Question: What if $R(u)$ is already really complicated?

Answer 2: You could use a symbolic math package to compute the derivative (e.g., Maple, Mathematics, ...)

Practical considerations

Question: What if $R(u)$ is already really complicated?

Answer 3: Or you could use automatic differentiation from within the code:

- in the code you only implement $R(u)$
- which you need anyway
- and get $R^{\prime}(u)$ for free (and correct!) if you do it right

Step-33 shows an example of how to do this.

Practical considerations

Question: How accurate do we have to be?

Observation: In the first few Newton steps, we are still far away from the solution!

- We could compute Newton updates δu_{k} on a coarse mesh
- We could solve the linear system inaccurately

In practice, this is exactly what is done.

Practical considerations

Question: But Newton's method does not always converge?

Answer: Yes. In many cases on needs a "globalization" strategy such as

- line search
- a trust region method

Newton's method for PDEs

Summary: For Newton's method on PDEs, we need to think about what the derivative of the residual $R(u)$ should mean.

In practice: The derivative can be computed almost as normal.

We can then define each Newton iteration in weak form as

$$
\left(\phi,\left[R^{\prime}\left(u_{k}\right)\right] \delta u_{k}\right)=-\left(\phi, R\left(u_{k}\right)\right), \quad u_{k+1}=u_{k}+\delta u_{k}
$$

We then solve for the Newton updates δu_{k} on finer and finer meshes with more and more accuracy.

MATH 676

Finite element methods in scientific computing

Wolfgang Bangerth, Texas A\&M University

