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Lecture 31.5:

Nonlinear problems

Part 1: Introduction
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Nonlinear problems

Reality is nonlinear.
Linear equations are only approximations.
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Nonlinear problems

Reality is nonlinear.
Linear equations are only approximations.

Linear equations typically assume that something is 
small:

● Poisson equation for displacement of a membrane
Assumption: small displacement

● Stokes equation
Assumption: slow flow, incompressible medium

● Maxwell equations
Assumption: Small electromagnetic field strength
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Fluid flow example, part 1

Consider the Stokes equations:

These equations are the small-velocity approximation of the 
nonlinear Navier-Stokes equations:

ρ
∂u
∂ t

−νΔu+∇ p  =  f

∇⋅u                       = 0

ρ( ∂u
∂ t

+u⋅∇ u)−νΔu+∇ p  = f

∇⋅u                                      =  0
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Fluid flow example, part 2

The Navier-Stokes equations

are the small-pressure approximation of the variable-density 
Navier-Stokes equations:

ρ( ∂u
∂ t

+u⋅∇ u)−νΔu+∇ p  = f

∇⋅(ρu)                                 =  0

ρ( ∂u
∂ t

+u⋅∇ u)−νΔu+∇ p  = f

∇⋅u                                      =  0
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Fluid flow example, part 3

The variable-density Navier-Stokes equations can be further 
generalized:

● The viscosity really depends on
– pressure
– strain rate

● Friction converts mechanical energy into heat
● Viscosity and density depend on temperature
● … 
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1d elastic deformation example

Consider a 1d rubber band:
– Clamped at the ends
– Deformed perpendicularly by a force f(x)
– Leading to a perpendicular displacement u(x)

                u(x)

  
       x
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1d elastic deformation example

                u(x)

  

       x
If a material is linearly elastic, then the energy stored in a 
deformation is proportional to its elongation:

Δ x

u ' (x)Δ x√(Δ x )2+(u ' (x)Δ x )2

Edeformation (u)  = limΔ x→0 ∑
j=1, Δ x=

(b−a)

N

N
A (√(Δ x)2+(u ' (x j)Δ x)2−Δ x )

                     =  ∫a

b
A (√(dx)2

+(u ' (x)dx)2
−dx )  =  ∫a

b
A (√1+(u ' (x ))2

−1)dx
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1d elastic deformation example

The total energy is a sum of two terms:
– the deformation energy
– the work against an external force

E (u)  =  Edeformation+Epotential

         =  ∫a

b
A (√1+(u ' (x))2

−1)dx  −  ∫a

b
f (x)u(x)dx

         =  ∫a

b

[ A (√1+(u ' (x))2
−1)−f (x)u(x)]dx
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1d elastic deformation example

We seek that displacement u(x) that minimizes the energy

This is equivalent to finding that point u(x) for which every 
infinitesimal variation εv(x) leads to the same energy:

In other words:

E (u)  =  ∫a

b

[ A (√1+(u ' (x ))2−1 )−f (x )u(x)]dx

limϵ→0
1
ϵ [E (u+ϵ v)−E (u)]  = 0        ∀ v∈H 0

1

∫a

b

(A v ' (x)u ' (x)

√1+(u ' (x))2
−v(x) f (x))dx  = 0             ∀ v∈H 0

1
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1d elastic deformation example

We seek that displacement u(x) that satisfies

The strong form of this equation is:

In multiple space dimensions, this generalizes to this:

This is often called the minimal surface equation.

∫a

b

(A v ' (x)u ' (x)

√1+(u ' (x))2
−v (x) f (x))dx  = 0             ∀ v∈H 0

1

−(A u ' (x)

√1+(u ' (x ))2 )
'

 =  f (x)

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f
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Minimal surface vs. Poisson equation

Note: If the vertical displacement of the membrane is small 
and smooth, then

In this case, the (nonlinear) minimal surface equation

can be approximated by the (linear) Poisson equation:

∣∇ u∣2≪1

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

−∇⋅( A ∇ u )  = f
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What makes this complicated?

Start with the minimal surface equation

and its weak form:

Let's see what happens if we just discretize as always using

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

(∇ φ , A
∇ u

√1+∣∇ u∣2 )  =  (φ , f )        ∀φ∈H 0
1

uh(x)  =  ∑ j
U jφ j (x)
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What makes this complicated?

Start with the minimal surface equation

and discretize as always:

We can pull some coefficients and sums out:

This is a (potentially large) nonlinear system of equations!

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

(∇ φi , A
∇∑ j

U jφ j

√1+∣∇∑ j
U jφ j∣

2 )  = (φi , f )        ∀ i=1 ... N

∑ j (∇ φi , A
∇ φ j

√1+∣∑ j
U j∇ φ j∣

2 )U j  =  (φi , f )        ∀ i=1... N
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What makes this complicated?

Start with the minimal surface equation

Discretizing as usual yields a system of nonlinear equations:

This could be written as

Problem: We don't know how to solve such systems 
directly. I.e., we know of no finite sequence of steps that 
yields the solution of general systems of nonlinear systems!

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

∑ j (∇ φi , A
∇ φ j

√1+∣∑ j
U j∇ φ j∣

2 )U j  =  (φi , f )        ∀ i=1... N

A (U )U  = F
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Nonlinear problems

In general: There is no finite algorithm to find 
simultaneous roots of a general system of nonlinear 
equations:

Or more concisely:

However: Such algorithms exist for the linear case, e.g., 
Gaussian elimination.

f 1(x1 , ... , xN )=0
f 2(x1 , ... , xN )=0

⋮
f N (x1 , ... , xN )=0

F (x)=0
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Nonlinear problems

In fact: There is no finite algorithm to find a root of a single 
general nonlinear equation:

All algorithms for this kind of problem are iterative:

● Start with an initial guess  x
0

● Compute a sequence of iterates {x
k
}

● Hope (or prove) that   x
k

 → x  where  x  is a root of  f(.).

From here on: Consider only time-independent problems.

f (x)=0
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Approach to nonlinear problems

Goal: Find a “fixed point”  x  so that

Choose a function  g(x)  so that the solutions of

are also roots of  f(x). Then iterate

This iteration converges if  g  is a contraction.

f (x)  = 0

x  = g(x)

xk+1  = g (xk)
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Approach to nonlinear problems

Goal: Choose  g(x)  so that

Examples:
● “Picard iteration” (assume that  f(x)=p(x)x-h):

● Pseudo-timestepping:

● Newton's method

x  = g(x)     ⇔     f (x)=0

g (x )  = x−
f (x)
f ' (x)

      →       xk+1  = xk−
f (xk)

f ' (xk )

g (x)  = x±Δ τ f (x)       →       
xk+1−xk

Δ τ
 = ±  f (xk)

g (x )  = 
1

p(x)
h       →       p(xk) xk+1  =  h
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Application to the minimal surface equation

Goal: Solve

Picard iteration: Repeatedly solve

or in weak form:

This is a linear PDE in  u
k+1

. We know how to do this.

−∇⋅(A
∇ uk+1

√1+∣∇ uk∣
2 )  =  f

(∇ φ ,
A

√1+∣∇ uk∣
2
∇ uk+1)  =  (φ , f )        ∀φ∈H 0

1

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f
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Application to the minimal surface equation

Goal: Solve

Picard iteration: Repeatedly solve

Pros and cons:
● This is like the Poisson equation with a spatially varying 

coefficient (like step-6)  SPD matrix, easy→
● Converges frequently
● Picard iteration typically converges rather slowly

(∇ φ ,
A

√1+∣∇ uk∣
2
∇ uk+1)  =  (φ , f )        ∀φ∈H 0

1

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f
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Application to the minimal surface equation

Goal: Solve

Pseudo-timestepping: Iterate to  τ→∞ the equation

For example using the explicit Euler method:

∂u(τ)
∂ τ

−∇⋅(A ∇ u(τ)

√1+∣∇ u(τ)∣2 )  = f

uk+1−uk

Δ τ
−∇⋅(A

∇ uk

√1+∣∇ uk∣
2 )  =  f

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f
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Application to the minimal surface equation

Goal: Solve

Pseudo-timestepping: Iterate to  τ→∞ the equation

Alternatively (and better): Semi-implicit Euler method… 

...or some higher order time stepping method.

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

∂u(τ)
∂ τ

−∇⋅(A ∇ u(τ)

√1+∣∇ u(τ)∣2 )  = f

uk+1−uk

Δ τ
−∇⋅(A

∇ uk+1

√1+∣∇ uk∣
2 )  =  f
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Application to the minimal surface equation

Goal: Solve

Pseudo-timestepping: Semi-implicit Euler method

Pros and cons:
● Pseudo-timestepping converges almost always
● Easy to implement (it's just a heat equation)
● With implicit method, can make time step larger+larger
● Often takes many many time steps

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

uk+1−uk

Δ τ
−∇⋅(A

∇ uk+1

√1+∣∇ uk∣
2 )  =  f
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Application to the minimal surface equation

Goal: Solve

Newton's method: Consider the residual

Solve  R(u)=0  by using the iteration

or equivalently:

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

R (u)  = f +∇⋅(A ∇ u

√1+|∇ u|2 )

uk+1  = uk−[R ' (uk )]
−1 R (uk)

[R ' (uk)] δuk  = −R (uk),       uk+1  = uk+δuk
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Application to the minimal surface equation

Goal: Solve

Newton's method: Iterate on

Here, this means:

This is in fact a symmetric and positive definite problem.

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

[R ' (uk)] δuk  = −R (uk),       uk+1  = uk+δuk

−∇⋅(
A

√1+∣∇ uk∣
2
∇ δuk)+∇⋅(A

∇ uk⋅∇ δuk

(1+∣∇ uk∣
2)

3 /2
∇ uk)  =  f +∇⋅(

A

√1+∣∇ uk∣
2
∇ uk )
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Application to the minimal surface equation

Goal: Solve

Newton's method: Iterate on

Pros and cons:
● Rapid, quadratic convergence
● Only converges when started close enough to the solution
● Operator has different structure than in Picard

−∇⋅(A ∇ u

√1+∣∇ u∣2 )  = f

[R ' (uk)] δuk  = −R (uk),       uk+1  = uk+δuk
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Summary for nonlinear problems

● Nonlinear (stationary) PDEs are difficult because there are 
no direct algorithms for nonlinear systems of equations

● In the context of PDEs, we typically use one of three 
classes of methods:

– Picard iteration
. converges frequently, but slowly

– Pseudo-timestepping
. converges most reliably, but slowly

– Newton iteration
. does not always converge
. if it converges, then very rapidly
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