Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

http://www.dealii.org/

Lecture 3.98:

The ideas behind the finite element method

Part 9: Sparsity as a key property

http://www.dealii.org/

Recall:

• We find the coefficients U_i of the solution

$$u_h(x) = \sum_{j=1}^N U_j \varphi_j(x)$$

by solving a linear system

AU = F

- The size of the linear system equals the number of coefficients U_i
- There may be many coefficients: 1000s to billions!

http://www.dealii.org/

http://www.dealii.org/

A few billion unknowns: DB: solution.visit Cycle: 1470 Time: 1.50025e+08

http://www.dealii.org/

Question: How can we even imagine solving linear systems

$$AU = F$$

with millions or billions of unknowns?

Problem 1: With *N* unknowns, storing everything requires $M = (N^2 + N + N) * 8$ bytes of memory

Examples:

- $N=10^6 \rightarrow M=10,000 \text{ GB} \rightarrow \text{maybe possible}$
- $N=10^9 \rightarrow M=10^{10} \text{ GB} \rightarrow \text{not possible}$

Question: How can we even imagine solving linear systems

AU = F

with millions or billions of unknowns?

Problem 2: With *N* unknowns, Gauss elimination takes $C = 2/3 N^3$ operations

Examples:

- $N=10^6 \rightarrow C=10^{18}$ operations = 30 years @ 10⁹ ops/sec
- $N=10^9 \rightarrow C=10^{27}$ operations = irrelevant

Question: How can we even imagine solving linear systems

AU = F

with millions or billions of unknowns?

Answers:

- We *can't* solve general linear system of these sizes
- The FEM must be producing linear systems of a special kind that makes this feasible

• *How* we solve these linear systems: Lectures 34-38

http://www.dealii.org/

Summary:

The FEM must be producing linear systems

AU = F

of a special kind that makes their solution feasible.

This property is *sparsity*: Nearly all entries in the finite element matrix *A* are zero!

This is not an accident: It is a design criterion of the FEM. It is what makes the method successful!

http://www.dealii.org/

The basis functions of the FEM

Recall: We chose the basis functions φ_j so that they are 1 at one of the nodes and 0 at all of the others.

Example for a 1d mesh:

Wolfgang Bangerth

The basis functions of the FEM

Recall: We chose the basis functions φ_j so that they are 1 at one of the nodes and 0 at all of the others.

Example for a triangular 2d mesh:

http://www.dealii.org/

The basis functions of the FEM

Recall: We chose the basis functions φ_j so that they are 1 at one of the nodes and 0 at all of the others.

http://www.dealii.org/

Also recall:

For the linear system corresponding to the Laplace equation,

AU = F

the matrix entries are defined by

$$A_{ij} = \int_{\Omega} \nabla \varphi_i(x) \cdot \nabla \varphi_j(x) dx$$

Important: A_{ij} is only nonzero if shape functions φ_i and φ_j are nonzero in regions that *overlap*!

This is only true if φ_i and φ_j are defined at vertices that are part of a common cell.

http://www.dealii.org/

Then: $A_{13,j} \neq 0$ only if j=13 or if j is one of 6 adjacent vertices \rightarrow At most 7 nonzero entries per row of A!

http://www.dealii.org/

Then: $A_{13,j} \neq 0$ only if j=13 or if j is one of 8 adjacent vertices \rightarrow At most 9 nonzero entries per row of A!

http://www.dealii.org/

Finite element matrices are "sparse":

- The number of entries per row is always $\leq m$
- *m* depends on
 - the equation (i.e., weak form)
 - the polynomial degree of the shape functions
 - the dimension of the domain
- Typical values:
 - 2d Laplace, triangles, piecewise linears: m=7
 - 3d Stokes, hexahedra, Taylor-Hood elements: $m \approx 400$

• **But:** *m* does not depend on the number of unknowns *N*!

Finite element matrices are "sparse"! Examples of the "sparsity patterns" of matrices:

(from step-2)

(from the DoFRenumbering namespace)

Note: The form of the sparsity pattern depends on how we enumerate our shape functions. But *m* does not!

http://www.dealii.org/

Finite element matrices are "sparse"!

Consequence:

- Storing A requires at most mN memory locations, rather than N^2
- Matrix-vector product with A requires at most mN operations, rather than N^2
- There are algorithms that solve linear systems AU=F using at most N matrix-vector products

There is hope for storing and solving even very large problems!

http://www.dealii.org/

Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

http://www.dealii.org/