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Lecture 3.98:

The ideas behind the
finite element method

Part 9: Sparsity as a key property
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On linear systems resulting from the FEM

Recall:
● We find the coefficients Uj of the solution

by solving a linear system

● The size of the linear system equals the number of 
coefficients  Uj

● There may be many coefficients: 1000s to billions!

uh(x )  = ∑ j=1

N
U jφ j( x)

AU  =  F
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A few thousand unknowns:

On linear systems resulting from the FEM
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A few million unknowns:

On linear systems resulting from the FEM
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A few billion unknowns:

On linear systems resulting from the FEM
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Question: How can we even imagine solving linear 
systems

with millions or billions of unknowns?

Problem 1: With N unknowns, storing everything requires
M = (N2+N+N) * 8 bytes of memory

Examples: 
● N=106  → M=10,000 GB  maybe possible→
● N=109  → M=1010 GB  not possible→

AU  =  F

On linear systems resulting from the FEM
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Question: How can we even imagine solving linear 
systems

with millions or billions of unknowns?

Problem 2: With N unknowns, Gauss elimination takes
C = 2/3 N3 operations

Examples: 
● N=106  C→ =1018 operations = 30 years @ 109 ops/sec
● N=109  C→ =1027 operations = irrelevant

AU  =  F

On linear systems resulting from the FEM
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Question: How can we even imagine solving linear 
systems

with millions or billions of unknowns?

Answers: 
● We can’t solve general linear system of these sizes
● The FEM must be producing linear systems of a special 

kind that makes this feasible

● How we solve these linear systems: Lectures 34-38

AU  =  F

On linear systems resulting from the FEM
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Summary: 
The FEM must be producing linear systems 

of a special kind that makes their solution feasible.

This property is sparsity:
Nearly all entries in the 

finite element matrix A are zero!

This is not an accident: It is a design criterion of the FEM. 
It is what makes the method successful!

AU  =  F

On linear systems resulting from the FEM
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The basis functions of the FEM

Recall: We chose the basis functions     so that they are 1 
at one of the nodes and 0 at all of the others.

Example for a 1d mesh:

φ j
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The basis functions of the FEM

Recall: We chose the basis functions     so that they are 1 
at one of the nodes and 0 at all of the others.

Example for a triangular 2d mesh:

φ j
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The basis functions of the FEM

Recall: We chose the basis functions     so that they are 1 
at one of the nodes and 0 at all of the others.

Example for a quadrilateral 2d mesh:

φ j
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The entries of the matrix A

Also recall: 

For the linear system corresponding to the Laplace equation,

the matrix entries are defined by

Important: Aij is only nonzero if shape functions φi and φj 
are nonzero in regions that overlap!

This is only true if φi and φj are defined at vertices that are 
part of a common cell.

AU  =  F

A ij=∫Ω
∇ φi( x)⋅∇ φ j (x)  dx
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The entries of the matrix A

Example: 

Assume that these are φ13 and φ42:

Then: A13,42=∫Ω
∇ φ13( x)⋅∇ φ42( x)  dx  = 0
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The entries of the matrix A

More specifically, for triangles: 

Assume that this is φ13:

Then: A13,j≠0 only if j=13 or if j is one of 6 adjacent vertices

 → At most 7 nonzero entries per row of A!
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The entries of the matrix A

More specifically, for quadrilaterals: 

Assume that this is φ13:

Then: A13,j≠0 only if j=13 or if j is one of 8 adjacent vertices

 → At most 9 nonzero entries per row of A!
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The entries of the matrix A

Finite element matrices are “sparse”: 
● The number of entries per row is always ≤m
● m depends on

– the equation (i.e., weak form)
– the polynomial degree of the shape functions
– the dimension of the domain

● Typical values:
– 2d Laplace, triangles, piecewise linears: m=7
– 3d Stokes, hexahedra, Taylor-Hood elements: m≈400

● But: m does not depend on the number of unknowns N!
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The entries of the matrix A

Finite element matrices are “sparse”! Examples of the 
“sparsity patterns” of matrices:

        (from step-2)               (from the DoFRenumbering namespace)

Note: The form of the sparsity pattern depends on how we 
enumerate our shape functions. But m does not!
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The entries of the matrix A

Finite element matrices are “sparse”!

Consequence:
● Storing A requires at most mN memory locations, rather 

than N2

● Matrix-vector product with A requires at most mN 
operations, rather than N2

● There are algorithms that solve linear systems AU=F 
using at most N matrix-vector products

There is hope for storing and solving
even very large problems!
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