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The ideas behind the
finite element method

Lecture 3.98:

Part 9: Sparsity as a key property
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On linear systems resulting from the FEM

Recall:
« We find the coefficients UJ. of the solution

uy(x) = X Usg,(x)

by solving a linear system

AU = F

* The size of the linear system equals the number of
coefficients U,

* There may be many coefficients: 1000s to billions!
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On linear systems resulting from the FEM

A few thousand unknowns
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On linear systems resulting from the FEM

A few million unknowns:
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On linear systems resulting from the FEM

A few billion unknowns:
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On linear systems resulting from the FEM

Question: How can we even imagine solving linear
systems

AU = F

with millions or billions of unknowns?

Problem 1: With N unknowns, storing everything requires
M = (N°+N+N) * 8 bytes of memory

Examples:
 N=10° - M=10,000 GB - maybe possible
 N=10° - M=10'° GB — not possible

http://www.dealii.org/ Wolfgang Bangerth



http://www.dealii.org/

On linear systems resulting from the FEM

Question: How can we even imagine solving linear
systems

AU = F

with millions or billions of unknowns?

Problem 2: With N unknowns, Gauss elimination takes
C = 2/3 N’ operations

Examples:
* N=10° - C=108 operations = 30 years @ 10° ops/sec
* N=10° - C=10% operations = irrelevant
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On linear systems resulting from the FEM

Question: How can we even imagine solving linear
systems

AU = F

with millions or billions of unknowns?

Answers:

* We can’t solve general linear system of these sizes

* The FEM must be producing linear systems of a special
kind that makes this feasible

* How we solve these linear systems: Lectures 34-38
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On linear systems resulting from the FEM

Summary:
The FEM must be producing linear systems
AU = F
of a special kind that makes their solution feasible.

This property is sparsity:
Nearly all entries in the
finite element matrix A are zero!

This is not an accident: It is a design criterion of the FEM.
It is what makes the method successful!
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The basis functions of the FEM

Recall: We chose the basis functions ¢; so that they are 1
at one of the nodes and 0 at all of the others.

Example for a 1d mesh:

14
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The basis functions of the FEM

Recall: We chose the basis functions ¢; so that they are 1
at one of the nodes and 0 at all of the others.

Example for a triangular 2d mesh:

IUJsDU IU.?SUU
_ 0.5000 —0.5000
0.2500 0.2500
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The basis functions of the FEM

Recall: We chose the basis functions ¢; so that they are 1
at one of the nodes and 0 at all of the others.

Example for a quadrilateral 2d megoh:

1.000
0.7500
0.7500
—0.5000
—0.5000
—0.2500
0.2500
0.000
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The entries of the matrix A4

Also recall:
For the linear system corresponding to the Laplace equation,

AU = F
the matrix entries are defined by

Aij:fQ V(Pi(x>'V(Pj<X) dx

Important: A, is only nonzero if shape functions ¢, and ¢
are nonzero in regions that overlap!

This is only true if ¢, and ¢, are defined at vertices that are
part of a common cell.
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The entries of the matrix 4

Example:
Assume that these are ¢, and ¢_,:

I 0.7500 l 0.7500
—0.5000 —0.5000
_0.2500 —0.2500

0.000 0.000

Then: A13,42:IQV(P13(X)'V(P42<X) dx =0
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The entries of the matrix 4

More specifically, for triangles:
Assume that this is ¢, .:

00
l 0.7500
—0.5000
0.2500

Then: A ; #0 only if j=13 or if j is one of 6 adjacent vertices

- At most 7 nonzero entries per row of A!
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The entries of the matrix 4

More specifically, for quadrilaterals:
Assume that this is ¢, .:

l 0.7500
—0.5000
0.2500

Then: A ; #0 only if j=13 or if j is one of 8 adjacent vertices

- At most 9 nonzero entries per row of A!
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The entries of the matrix A4

Finite element matrices are “"sparse”:
* The number of entries per row is always =m

* m depends on
- the equation (i.e., weak form)
- the polynomial degree of the shape functions
- the dimension of the domain

* Typical values:
— 2d Laplace, triangles, piecewise linears: m=7/
— 3d Stokes, hexahedra, Taylor-Hood elements: m=400

* But: m does not depend on the number of unknowns N!

http://www.dealii.org/ Wolfgang Bangerth



http://www.dealii.org/

The entries of the matrix A4

Finite element matrices are “sparse’! Examples of the
“sparsity patterns” of matrices:

RN i
NN
IS |
(from step-2) (from the DoFRenumbering namespace)

Note: The form of the sparsity pattern depends on how we
enumerate our shape functions. But m does not!
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The entries of the matrix A4

Finite element matrices are “"sparse”!

Consequence:

* Storing A requires at most mN memory locations, rather
than N?

* Matrix-vector product with A requires at most mN
operations, rather than N?

* There are algorithms that solve linear systems AU=F
using at most N matrix-vector products

There is hope for storing and solving
even very large problems!
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