Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

Lecture 3.98:

The ideas behind the finite element method

Part 9: Sparsity as a key property

On linear systems resulting from the FEM

Recall:

- We find the coefficients U_{j} of the solution

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

by solving a linear system

$$
A U=F
$$

- The size of the linear system equals the number of coefficients U_{j}
- There may be many coefficients: 1000 s to billions!

On linear systems resulting from the FEM

A few thousand unknowns:

On linear systems resulting from the FEM

A few million unknowns:

On linear systems resulting from the FEM

A few billion unknowns:

On linear systems resulting from the FEM

Question: How can we even imagine solving linear systems

$$
A U=F
$$

with millions or billions of unknowns?

Problem 1: With N unknowns, storing everything requires

$$
M=\left(N^{2}+N+N\right) * 8 \text { bytes of memory }
$$

Examples:

- $N=10^{6} \rightarrow M=10,000 \mathrm{~GB} \rightarrow$ maybe possible
- $N=10^{9} \rightarrow M=10^{10} \mathrm{~GB} \rightarrow$ not possible

On linear systems resulting from the FEM

Question: How can we even imagine solving linear systems

$$
A U=F
$$

with millions or billions of unknowns?

Problem 2: With N unknowns, Gauss elimination takes
$C=2 / 3 N^{3}$ operations

Examples:

- $N=10^{6} \rightarrow \mathrm{C}=10^{18}$ operations $=30$ years @ $10^{9} \mathrm{ops} / \mathrm{sec}$
- $N=10^{9} \rightarrow \mathrm{C}=10^{27}$ operations = irrelevant

On linear systems resulting from the FEM

Question: How can we even imagine solving linear systems

$$
A U=F
$$

with millions or billions of unknowns?

Answers:

- We can't solve general linear system of these sizes
- The FEM must be producing linear systems of a special kind that makes this feasible
- How we solve these linear systems: Lectures 34-38

On linear systems resulting from the FEM

Summary:

The FEM must be producing linear systems

$$
A U=F
$$

of a special kind that makes their solution feasible.

This property is sparsity:
Nearly all entries in the finite element matrix A are zero!

This is not an accident: It is a design criterion of the FEM.
It is what makes the method successful!

The basis functions of the FEM

Recall: We chose the basis functions φ_{j} so that they are 1 at one of the nodes and 0 at all of the others.

Example for a 1d mesh:

The basis functions of the FEM

Recall: We chose the basis functions φ_{j} so that they are 1 at one of the nodes and 0 at all of the others.

Example for a triangular 2d mesh:

The basis functions of the FEM

Recall: We chose the basis functions φ_{j} so that they are 1 at one of the nodes and 0 at all of the others.

Example for a quadrilateral 2d mesh:

The entries of the matrix \boldsymbol{A}

Also recall:

For the linear system corresponding to the Laplace equation,

$$
A U=F
$$

the matrix entries are defined by

$$
A_{i j}=\int_{\Omega} \nabla \varphi_{i}(x) \cdot \nabla \varphi_{j}(x) d x
$$

Important: $A_{i j}$ is only nonzero if shape functions φ_{i} and φ_{j} are nonzero in regions that overlap!

This is only true if φ_{i} and φ_{j} are defined at vertices that are part of a common cell.

The entries of the matrix \boldsymbol{A}

Example:

Assume that these are φ_{13} and φ_{42} :

Then: $\quad A_{13,42}=\int_{\Omega} \nabla \varphi_{13}(x) \cdot \nabla \varphi_{42}(x) d x=0$

The entries of the matrix \boldsymbol{A}

More specifically, for triangles:

Assume that this is φ_{13} :

Then: $A_{13, j} \neq 0$ only if $j=13$ or if j is one of 6 adjacent vertices \rightarrow At most 7 nonzero entries per row of A !

The entries of the matrix \boldsymbol{A}

More specifically, for quadrilaterals:

Assume that this is φ_{13} :

Then: $A_{13, j} \neq 0$ only if $j=13$ or if j is one of 8 adjacent vertices \rightarrow At most 9 nonzero entries per row of A !

The entries of the matrix \boldsymbol{A}

Finite element matrices are "sparse":

- The number of entries per row is always $\leq m$
- m depends on
- the equation (i.e., weak form)
- the polynomial degree of the shape functions
- the dimension of the domain
- Typical values:
- 2d Laplace, triangles, piecewise linears: m=7
- 3d Stokes, hexahedra, Taylor-Hood elements: $m \approx 400$
- But: m does not depend on the number of unknowns N !

The entries of the matrix \boldsymbol{A}

Finite element matrices are "sparse"! Examples of the "sparsity patterns" of matrices:

(from step-2)

(from the DoFRenumbering namespace)

Note: The form of the sparsity pattern depends on how we enumerate our shape functions. But m does not!

The entries of the matrix \boldsymbol{A}

Finite element matrices are "sparse"!

Consequence:

- Storing A requires at most $m N$ memory locations, rather than N^{2}
- Matrix-vector product with A requires at most $m N$ operations, rather than N^{2}
- There are algorithms that solve linear systems $A U=F$ using at most N matrix-vector products

There is hope for storing and solving even very large problems!

Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

