# Finite element methods in scientific computing 

Wolfgang Bangerth, Colorado State University

## Lecture 3.93:

The ideas behind the finite element method

## Part 4: Finding an approximation

## Two fundamental questions

## Question 1: What is a good way to approximate functions that requires only finitely much data/computation?

Question 2: How do we find an approximation of the solution of a PDE without knowing the solution itself?

## How to find the approximation

## Let us assume the following situation for now:

- We are in 1d
- We want to solve

$$
-\frac{d^{2}}{d x^{2}} u(x)=f(x)
$$

- We seek a piecewise linear approximation of the solution $u(x)$
- We will call the approximation $u_{h}(x)$



## How to find the approximation

## A little bit of mathematical abstraction:

Every piecewise linear function can be written in the form

$$
u_{h}(x)=\sum_{j=1}^{N} \underbrace{U_{j} \varphi_{j}(x)}
$$


$u_{h}(x)=$ dark blue
$=$ green + light blue + orange

## How to find the approximation

## A little bit of mathematical abstraction:

Every piecewise linear function can be written in the form

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$




## How to find the approximation

## A little bit of mathematical abstraction:

Every piecewise linear function can be written in the form

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

In other words: To know $u_{h}(x)$, we only need to know the (finitely many) coefficientcs $U_{j}$.

## Two fundamental questions

## Question 2: How do we find an

 approximation of the solution of a PDE without knowing the solution itself?Equivalently: How to find the coefficients $U_{j}$ that define the approximation $u_{n}$ ?

Answer: We need to use the PDE!

## How to find the approximation

## Idea 1:

Take the form

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

and put it into the differential equation:

$$
-\frac{d^{2}}{d x^{2}} u_{h}(x)=f(x)
$$

This does not work:

- Second derivatives $\frac{d^{2}}{d x^{2}} u_{h}(x)$ are zero on each interval
- Second derivatives are not defined at the "node points"
$\rightarrow \quad \frac{d^{2}}{d x^{2}} u_{h}(x)$ can not equal $-f(x)$


## How to find the approximation

## Idea 2: Use the mathematical theory of "weak solutions"

Starting point for this theory: When we say that we want two functions $g(x)$ and $h(x)$ to be equal,

$$
g=h
$$

what do we actually mean by that?

- That they are equal for every $x$ ?
- That they are equal for almost every $x$ ?
- ...?

The problem arises because we only know how to compare numbers, but we now need to compare functions!

## Weak solutions

A solution: Turn the equation

$$
g=h
$$

into an (infinite) number of comparisons of numbers.

Here: We say that $g$ equals $h$ if

$$
\begin{aligned}
& F_{1}[g]=F_{1}[h] \\
& F_{2}[g]=F_{2}[h] \\
& F_{3}[g]=F_{3}[h]
\end{aligned}
$$

for an infinite number of appropriate "functionals" $F_{i}[$.$] .$
(Functional: Something that takes a function as argument and returns a number.)

## Weak solutions

Example 1: We say that $g$ equals $h$ on the interval $(0,1)$ if

$$
\begin{aligned}
\int_{0}^{1} g(x) d x & =\int_{0}^{1} h(x) d x \\
\int_{0}^{1} x g(x) d x & =\int_{0}^{1} x h(x) d x \\
\int_{0}^{1} x^{2} g(x) d x & =\int_{0}^{1} x^{2} h(x) d x
\end{aligned}
$$

## Weak solutions

Example 2: We say that $g$ equals $h$ on the interval $(0,1)$ if

$$
\begin{aligned}
\int_{0}^{1} g(x) d x & =\int_{0}^{1} h(x) d x \\
\int_{0}^{1} \sin (\pi x) g(x) d x & =\int_{0}^{1} \sin (\pi x) h(x) d x \\
\int_{0}^{1} \cos (\pi x) g(x) d x & =\int_{0}^{1} \cos (\pi x) h(x) d x \\
\int_{0}^{1} \sin (2 \pi x) g(x) d x & =\int_{0}^{1} \sin (2 \pi x) h(x) d x \\
\int_{0}^{1} \cos (2 \pi x) g(x) d x & =\int_{0}^{1} \cos (2 \pi x) h(x) d x
\end{aligned}
$$

## Weak solutions

In general: We say that $g$ equals $h$ if

$$
\begin{aligned}
& F_{1}[g]=F_{1}[h] \\
& F_{2}[g]=F_{2}[h] \\
& F_{3}[g]=F_{3}[h]
\end{aligned}
$$

for an infinite number of appropriate "functionals" $F_{i}[$.$] .$

Here: What is the "appropriate" set of "functionals" $F_{i}[$. depends on what kinds of functions $g$, $h$ we consider.

## Weak solutions

For differential equations: We say a function $u(x)$ is a "weak solution" of the PDE if

$$
\begin{aligned}
& F_{1}\left[-\frac{d^{2}}{d x^{2}} u\right]=F_{1}[f] \\
& F_{2}\left[-\frac{d^{2}}{d x^{2}} u\right]=F_{2}[f] \\
& F_{3}\left[-\frac{d^{2}}{d x^{2}} u\right]=F_{3}[f]
\end{aligned}
$$

where we choose $F_{k}[g]=\int_{\Omega} \varphi_{k}(x) g(x) d x$ for an infinite set of functions $\varphi_{k}(x)$

## Weak solutions

Put differently: We say a function $u(x)$ is a "weak solution" of the PDE if the equation

$$
\int_{\Omega} \varphi(x)\left[-\frac{d^{2}}{d x^{2}} u(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x
$$

holds "for all test functions functions $\varphi(x)$ ".

## In mathematical notation:

$$
\int_{\Omega} \varphi(x)\left[-\frac{d^{2}}{d x^{2}} u(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x \quad \forall \varphi
$$

## Weak solutions

## We would like to treat solution and test functions the

 same:We can achieve this by integrating by parts:

$$
\int_{\Omega} \varphi(x)\left[-\frac{d^{2}}{d x^{2}} u(x)\right] d x=\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u(x)\right] d x+\text { boundary terms }
$$

For now, we will ignore boundary terms.

In mathematical notation: $u(x)$ is a solution if

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x
$$

## A side note

Remark: The following two problems are equivalent:

$$
\begin{aligned}
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{1}(x)\right]\left[\frac{d}{d x} u(x)\right] d x=\int_{\Omega} \varphi_{1}(x) f(x) d x \\
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{2}(x)\right]\left[\frac{d}{d x} u(x)\right] d x=\int_{\Omega} \varphi_{2}(x) f(x) d x
\end{aligned}
$$

and

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x
$$

This is because "every function" can be expressed as

$$
\varphi(x)=\sum_{k=1}^{\infty} c_{k} \varphi_{k}(x)
$$

## How to find the approximation

## Idea 2: Use the mathematical theory of "weak solutions"

We know that the exact solution satisfies the equality

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x
$$

So we could try to find an approximate solution $u_{h}$ that satisfies

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x
$$

$\forall \varphi$

## How to find the approximation

## Idea 2: Use the mathematical theory of "weak solutions" to find an approximate solution:

We seek

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

so that

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi(x) f(x) d x \quad \forall \varphi
$$

Pro: Only first derivatives on $u_{h}$
Con: Only $N$ unknowns $U_{j}$, but infinitely many equations!

## How to find the approximation

## Idea 3: Restrict the set of "test functions" in the

 "weak formulation" to find an approximate solution:We seek

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

so that

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi_{h}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{h}(x) f(x) d x \quad \forall \varphi_{h}=\sum_{k=1}^{N} c_{k} \varphi_{k}
$$

This is equivalent to $N$ equations for $N$ unknowns!

This is called the Galerkin Method.

## How to find the approximation

## Equivalently, the "Galerkin method" reads:

Find

$$
u_{h}(x)=\sum_{j=1}^{N} U_{j} \varphi_{j}(x)
$$

so that

$$
\begin{aligned}
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{1}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{1}(x) f(x) d x \\
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{2}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{2}(x) f(x) d x \\
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{3}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{3}(x) f(x) d x
\end{aligned}
$$

## A word on notation

## We typically use the following abbreviated notation:

$$
(g, h)_{\Omega}:=\int_{\Omega} g(x) h(x) d x
$$

We can then re-write the problem

$$
\int_{\Omega}\left[\frac{d}{d x} \varphi_{h}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{h}(x) f(x) d x \quad \forall \varphi_{h}=\sum_{k=1}^{N} c_{k} \varphi_{k}
$$

as follows:

$$
\left(\frac{d}{d x} \varphi_{h}, \frac{d}{d x} u_{h}\right)=\left(\varphi_{h}, f\right)_{\Omega} \quad \forall \varphi_{h}=\sum_{k=1}^{N} c_{k} \varphi_{k}
$$

## A word on notation

Similarly:

$$
\begin{aligned}
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{1}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{1}(x) f(x) d x \\
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{2}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{2}(x) f(x) d x \\
& \int_{\Omega}\left[\frac{d}{d x} \varphi_{3}(x)\right]\left[\frac{d}{d x} u_{h}(x)\right] d x=\int_{\Omega} \varphi_{3}(x) f(x) d x
\end{aligned}
$$

is the same as:

$$
\begin{aligned}
\left(\frac{d}{d x} \varphi_{1}(x), \frac{d}{d x} u_{h}(x)\right) & =\left(\varphi_{1}(x), f(x)\right) \\
\left(\frac{d}{d x} \varphi_{2}(x), \frac{d}{d x} u_{h}(x)\right) & =\left(\varphi_{2}(x), f(x)\right) \\
\left(\frac{d}{d x} \varphi_{3}(x), \frac{d}{d x} u_{h}(x)\right) & =\left(\varphi_{3}(x), f(x)\right)
\end{aligned}
$$

## How to find the approximation

## Similarly, in higher dimensions this look as follows:

Start with

$$
-\Delta u(\vec{x})=f(\vec{x})
$$

Multiply by a test function, integrate:

$$
\int_{\Omega} \varphi(\vec{x})[-\Delta u(\vec{x})] d x=\int_{\Omega} \varphi(\vec{x}) f(\vec{x}) d x
$$

Then integrate by parts on the left hand side:

$$
\int_{\Omega} \varphi(\vec{x})[-\Delta u(\vec{x})] d x=\int_{\Omega}[\nabla \varphi(\vec{x})] \cdot[\nabla u(\vec{x})] d x+\text { boundary terms }
$$

## How to find the approximation

## Similarly, in higher dimensions this look as follows:

We then seek

$$
u_{h}(\vec{x})=\sum_{j=1}^{N} U_{j} \varphi_{j}(\vec{x})
$$

so that

$$
\int_{\Omega}\left[\nabla \varphi_{h}(\vec{x})\right] \cdot\left[\nabla u_{h}(\vec{x})\right] d x=\int_{\Omega} \varphi_{h}(\vec{x}) f(\vec{x}) d x \quad \forall \varphi_{h}=\sum_{k=1}^{N} c_{k} \varphi_{k}
$$

Or, in shorthand notation:

$$
\left(\nabla \varphi_{h}, \nabla u_{h}\right)=\left(\varphi_{h}, f\right) \quad \forall \varphi_{h}=\sum_{k=1}^{N} c_{k} \varphi_{k}
$$

## More questions

For this method to be useful, we need to ask more questions:

> Question 3: Is the approximation $u_{h}$ so defined "close" to the exact solution $u$ ?

Question 4: Does $u_{n}$ "converge" towards $u$ in some useful sense?

Question 5: What is the computational effort to reach a certain accuracy? Optimality?

These are all non-trivial mathematical questions left for later lectures.

# Finite element methods in scientific computing 

Wolfgang Bangerth, Colorado State University

