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Lecture 3.93:

The ideas behind the
finite element method

Part 4: Finding an approximation
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Two fundamental questions

Question 1: What is a good way to 
approximate functions that requires only 

finitely much data/computation?

Question 2: How do we find an 
approximation of the solution of a PDE 

without knowing the solution itself?
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How to find the approximation

Let us assume the following situation for now:
● We are in 1d
● We want to solve

● We seek a piecewise 
linear approximation
of the solution u(x)

● We will call the
approximation  u

h
(x)

−
d2

dx2
u(x )  = f (x )
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How to find the approximation

A little bit of mathematical abstraction:
Every piecewise linear function can be written in the form

uh(x )  = ∑ j=1

N
U jφ j (x)⏟

uh(x)  =  dark blue
           =  green+ light blue+orange
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How to find the approximation

A little bit of mathematical abstraction:
Every piecewise linear function can be written in the form

uh(x )  = ∑ j=1

N
U jφ j( x)
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How to find the approximation

A little bit of mathematical abstraction:
Every piecewise linear function can be written in the form

In other words: To know u
h
(x), we only need to know the 

(finitely many) coefficientcs U
j
.

uh(x )  = ∑ j=1

N
U jφ j( x)
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Two fundamental questions

Question 2: How do we find an
approximation of the solution of a PDE

without knowing the solution itself?

Equivalently: How to find the coefficients U
j

that define the approximation u
h
?

Answer: We need to use the PDE!
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How to find the approximation

Idea 1:
Take the form

and put it into the differential equation:

This does not work:
● Second derivatives           are zero on each interval
● Second derivatives are not defined at the “node points”
            →            can not equal  -f(x)  

uh(x )  = ∑ j=1

N
U jφ j( x)

−
d2

dx2
uh(x)  =  f ( x)

d2

dx 2 uh(x )

d2

dx 2 uh(x )
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How to find the approximation

Idea 2: Use the mathematical theory of “weak 
solutions”

Starting point for this theory: When we say that we 
want two functions  g(x)  and  h(x)  to be equal,

what do we actually mean by that?
● That they are equal for every x?
● That they are equal for almost every x?
● …?

The problem arises because we only know how to compare 
numbers, but we now need to compare functions!

g  =  h
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Weak solutions

A solution: Turn the equation

into an (infinite) number of comparisons of numbers.

Here: We say that  g  equals  h  if

for an infinite number of appropriate “functionals”  F
i
[.].

(Functional: Something that takes a function as argument and returns a number.)

F1 [g ]  = F1[h]
F2 [g ]  = F2[h]
F3 [g ]  = F3[h]

...

g  =  h
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Weak solutions

Example 1: We say that  g  equals  h  on the interval 
(0,1) if

∫0

1
g(x )dx  =  ∫0

1
h(x)dx

∫0

1
x g(x )dx  =  ∫0

1
xh(x)dx

∫0

1
x2g(x )dx  =  ∫0

1
x2h(x )dx

...
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Weak solutions

Example 2: We say that  g  equals  h  on the interval 
(0,1) if

∫0

1
g(x)dx  =  ∫0

1
h(x)dx

∫0

1
sin(π x )g(x)dx  =  ∫0

1
sin(π x )h(x )dx

∫0

1
cos(π x )g(x)dx  =  ∫0

1
cos (π x)h(x )dx

∫0

1
sin(2π x )g(x)dx  =  ∫0

1
sin(2π x)h(x)dx

∫0

1
cos(2π x )g(x)dx  =  ∫0

1
cos (2π x)h(x )dx

...
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Weak solutions

In general: We say that  g  equals  h  if

for an infinite number of appropriate “functionals”  F
i
[.].

Here: What is the “appropriate” set of  “functionals”  F
i
[.] 

depends on what kinds of functions  g, h  we consider.

F1 [g ]  = F1[h]
F2 [g ]  = F2[h]
F3 [g ]  = F3[h]

...
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Weak solutions

For differential equations: We say a function u(x) is a 
“weak solution” of the PDE if

where we choose                              for an infinite set of 
functions

F1 [− d2

dx2
u]  = F1[ f ]

F2 [− d2

dx2
u]  = F2[ f ]

F3 [− d2

dx2 u]  = F3 [ f ]

...

Fk [g]=∫Ω
φk (x )g( x)dx

φk (x )
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Weak solutions

Put differently: We say a function u(x) is a “weak 
solution” of the PDE if the equation

holds “for all test functions functions         ”.

In mathematical notation:

∫
Ω
φ(x)[− d2

dx2
u(x )]dx  =  ∫

Ω
φ(x) f ( x)dx

φ(x)

∫
Ω
φ(x)[− d2

dx2
u(x)]dx  =  ∫

Ω
φ(x) f ( x)dx                 ∀φ
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Weak solutions

We would like to treat solution and test functions the 
same:

We can achieve this by integrating by parts: 

For now, we will ignore boundary terms.

In mathematical notation: u(x) is a solution if

∫
Ω
φ(x)[− d2

dx2
u(x)]dx  =  ∫

Ω [ ddx φ(x)] [ ddx u( x)]dx+boundary terms

∫
Ω [ ddx φ(x)] [ ddx u(x)]dx  =  ∫

Ω
φ(x) f ( x)dx                 ∀φ
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A side note

Remark: The following two problems are equivalent:

and

This is because “every function” can be expressed as

φ(x)  =  ∑k=1

∞

ckφk (x)

∫
Ω [ ddx φ(x)] [ ddx u(x )]dx  =  ∫

Ω
φ(x) f ( x)dx                 ∀φ

∫
Ω [ ddx φ1(x)] [ ddx u( x)]dx  =  ∫

Ω
φ1(x) f (x)dx

∫
Ω [ ddx φ2(x)] [ ddx u( x)]dx  =  ∫

Ω
φ2(x ) f (x)dx

...
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How to find the approximation

Idea 2: Use the mathematical theory of “weak 
solutions”

We know that the exact solution satisfies the equality

So we could try to find an approximate solution u
h
 that 

satisfies

∫
Ω [ ddx φ(x)] [ ddx u(x)]dx  =  ∫

Ω
φ(x) f ( x)dx                 ∀φ

∫
Ω [ ddx φ(x)] [ ddx uh(x)]dx  = ∫

Ω
φ(x ) f (x)dx                 ∀φ
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How to find the approximation

Idea 2: Use the mathematical theory of “weak 
solutions” to find an approximate solution:

We seek

so that

Pro: Only first derivatives on u
h

Con: Only N unknowns  U
j
, but infinitely many equations!

∫
Ω [ ddx φ(x)] [ ddx uh(x)]dx  = ∫

Ω
φ(x ) f (x)dx                 ∀φ

uh(x )  =  ∑ j=1

N
U jφ j(x )
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How to find the approximation

Idea 3: Restrict the set of “test functions” in the 
“weak formulation” to find an approximate solution:

We seek

so that

This is equivalent to N equations for N unknowns!

This is called the Galerkin Method.

∫
Ω [ ddx φh(x)][ ddx uh(x )]dx  =  ∫

Ω
φh(x ) f (x)dx                 ∀φh=∑k=1

N
ckφk

uh(x )  =  ∑ j=1

N
U jφ j(x )
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How to find the approximation

Equivalently, the “Galerkin method” reads:

Find

so that

∫
Ω [ ddx φ1(x )][ ddx uh(x )]dx  = ∫

Ω
φ1(x ) f (x)dx

∫
Ω [ ddx φ2( x)][ ddx uh(x )]dx  = ∫

Ω
φ2( x) f (x )dx

∫
Ω [ ddx φ3( x)][ ddx uh( x)]dx  = ∫

Ω
φ3(x) f ( x)dx

                                             ⋯

uh(x )  =  ∑ j=1

N
U jφ j(x )
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A word on notation

We typically use the following abbreviated notation:

We can then re-write the problem

as follows:

∫
Ω [ ddx φh(x)][ ddx uh(x )]dx  =  ∫

Ω
φh(x ) f (x)dx                 ∀φh=∑k=1

N
ckφk

(g ,h)Ω  := ∫
Ω
g(x) h( x) dx

( ddx φh ,
d
dx
uh)  = (φh , f )Ω                 ∀φh=∑k=1

N
ckφk
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A word on notation

Similarly:

is the same as:

∫
Ω [ ddx φ1(x )][ ddx uh(x )]dx  = ∫

Ω
φ1(x ) f (x)dx

∫
Ω [ ddx φ2( x)][ ddx uh(x )]dx  = ∫

Ω
φ2( x) f (x )dx

∫
Ω [ ddx φ3( x)][ ddx uh( x)]dx  = ∫

Ω
φ3(x) f ( x)dx

                                             ⋯

( ddx φ1(x) ,
d
dx
uh(x))  = (φ1(x ), f (x))

( ddx φ2(x ),
d
dx
uh(x ))  =  (φ2(x) , f (x ))

( ddx φ3(x ),
d
dx
uh(x ))  =  (φ3(x ), f (x ))

                                             ⋯
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How to find the approximation

Similarly, in higher dimensions this look as follows:

Start with

Multiply by a test function, integrate:

Then integrate by parts on the left hand side:

∫
Ω
φ( x⃗ ) [−Δu( x⃗)] dx  =  ∫

Ω
[ ∇ φ( x⃗ )]⋅[∇ u( x⃗) ]dx+boundary terms

∫
Ω
φ( x⃗ ) [−Δu( x⃗)] dx  =  ∫

Ω
φ( x⃗ ) f ( x⃗)dx

−Δu( x⃗)  = f ( x⃗)
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How to find the approximation

Similarly, in higher dimensions this look as follows:

We then seek

so that

Or, in shorthand notation:

∫Ω [∇ φh( x⃗) ]⋅[∇ uh( x⃗ )]dx  = ∫Ω
φh( x⃗ ) f ( x⃗ )dx                 ∀φh=∑k=1

N
ckφk

uh( x⃗ )  =  ∑ j=1

N
U jφ j( x⃗ )

(∇ φh ,∇ uh )  =  (φh , f )                                  ∀φh=∑k=1

N
ckφk
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More questions

For this method to be useful, we need to ask more 
questions:

Question 3: Is the approximation u
h
 so 

defined “close” to the exact solution u?

Question 4: Does u
h
 “converge” towards u in

some useful sense?

Question 5: What is the computational effort
to reach a certain accuracy? Optimality?

These are all non-trivial mathematical questions left for 
later lectures.
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