# Finite element methods in scientific computing 

Wolfgang Bangerth, Colorado State University

## Lecture 3.92:

## The ideas behind the finite element method

## Part 3: Piecewise polynomial approximation in 2d/3d

## Piecewise polynomial approximation in 1d

## In 1d:

- Split the domain $\Omega \subset R$ of a function into intervals
- Define a piecewise function: linear on each interval, continuous at interval boundaries
- More sub-intervals $\rightarrow$ better approximation


Green: The function $f(x)$ we want to approximate.
Purple: The piecewise linear approximant $f_{h}(x)$.

## Piecewise polynomial approximation in 2d

## In 1d:

- Split the domain $\Omega \subset R$ of a function into intervals
- Define a piecewise function: linear on each interval, continuous at interval boundaries
- More sub-intervals $\rightarrow$ better approximation


## In 2d:

- Split the domain $\Omega \subset R^{2}$ of a function into "cells"
- Define a piecewise function: linear on each cell, continuous at cell boundaries
- Smaller cells $\rightarrow$ better approximation


## Piecewise polynomial approximation in 2d

## Example with triangles:

Step 1: Subdivide the domain into triangular "cells".


We call the collection of cells the "mesh".

## Piecewise polynomial approximation in 2d

## Example with triangles:

Step 2: Represent functions as piecewise polynomials.


The function is linear on each triangle.

## Piecewise polynomial approximation in 2d

## Example with quadrilaterals:

Step 1: Subdivide the domain into quadrilateral "cells".


We call the collection of cells the "mesh".

## Piecewise polynomial approximation in 2d

## Example with quadrilaterals:

Step 2: Represent functions as piecewise polynomials.


The function is bi-linear on each quadrilateral.

## Piecewise polynomial approximation in 3d

## In 2d:

- Split the domain $\Omega \subset R^{2}$ of a function into "cells"
- Cells can be triangles or quadrilaterals
- Define a piecewise function: linear/polynomial on each cell, continuous at cell boundaries


## In 3d:

- Split the domain $\Omega \subset R^{3}$ of a function into "cells"
- Cells can be tetrahedra, hexahedra, pyramids, prisms
- Define a piecewise function: linear/polynomial on each cell, continuous at cell boundaries


## Piecewise polynomial approximation in 3d

## Example with tetrahedra:

Subdivide the domain into cells


We call the collection of cells the "mesh".

## Piecewise polynomial approximation in 3d

## Example with hexahedra:

Subdivide the domain into cells


We call the collection of cells the "mesh".

## Piecewise polynomial approximation

## "Higher order":

- The examples above used piecewise linear approximation
- Easily extendable to higher order:
- piecewise quadratic
- piecewise cubic
- ...
- On each interval/cell, the approximation is linear/quadratic/cubic/...

Notation: We say that the approximation is

- $P_{1} / P_{2} / \ldots$ : pw. linear/quadratic on triangles/tetrahedra
- $Q_{1} / Q_{2} / \ldots$ : pw. linear/quadratic on quads/hexahedra
- In 1d, $P_{p}=Q_{p}$


## Piecewise polynomial approximation

Regardless of dimension and choice of cell:

## Theorem:

- $f$ is a function defined on a domain $\Omega \subset R^{2}$.
- $f_{h, p}$ is a piecewise function that interpolates $f$, defined on a mesh that subdivides $\Omega$.
- $h=$ the diameter of the largest cell of the mesh
- $p=$ the polynomial degree used on the cells

Then:

$$
\begin{aligned}
&\left\|f-f_{h, p}\right\|:=\left(\int_{\Omega}\left|f(x)-f_{h, p}(x)\right|^{2}\right)^{1 / 2} \\
&\left\|\nabla f-\nabla f_{h, p}\right\| \leq\left(\int_{\Omega}\left|\nabla f(x)-\nabla f_{h, p}(x)\right|^{2}\right)^{1 / 2} \leq \frac{C_{1}(f, p, \Omega)}{p!} h^{p+} \\
& p!
\end{aligned}
$$

## Piecewise polynomial approximation

## A note on terminology:

- We split the domain $\Omega \subset R^{d}$ of a function into "cells"
- In 1d: Cells are intervals
- In 2d: Cells can be triangles or quadrilaterals
- In 3d: Cells can be tetrahedra, hexahedra, pyramids, prisms
- The collection of cells is called the "mesh"
- We also use the term "triangulation"
- even in 1d and 3d
- even in 2d if we use quadrilaterals


## Piecewise polynomial approximation

## Summary:

- Subdivision of the domain into a mesh of cells + defining polynomial approximations on each cell generalizes the 1d construction
- As before, if we make cells small ( $h$ small), then the interpolation error decreases.
- Any function (within the class we care about) can be arbitrarily well approximated if we just put in enough computational work!


# Finite element methods in scientific computing 

Wolfgang Bangerth, Colorado State University

