
MATH 651: Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 2 – due 9/27/2019

Problem 1 (Stability of Lagrange interpolation). Let’s say you want to approximate the function
f(x) with a single, global, high order polynomial pN−1. To this end, assume that we evaluate f at a set of
points {xi}Ni=1 to obtain yi = f(xi).

We will again assume that f is expensive to evaluate. The goal of this exercise is to assess what happens
if we can only evaluate f up to some measurement error. In other words, we don’t know the exact yi values,
but only some ỹi ≈ yi, and if we interpolate these values, we will also only obtain an interpolation function
p̃N−1 that we hope is still close to pN−1.

Mathematically, any good method should ensure that if ‖y − ỹ‖ is small, then ‖pN−1 − p̃N−1‖ is also
small in some norm (e.g., the infinity norm) – or more specifically, we want that

‖pN−1 − p̃N−1‖∞ ≤ C‖y − ỹ‖∞

for some constant C of moderate size for any perturbation ỹ or y. (The norm on the left is the infinity norm
on functions, i.e., the maximal absolute value within the domain of the function; the norm on the right is
the maximum norm on vectors, i.e., the maximal absolute value over all entries of the vector.) If such a
constant C exists, and if it is of “reasonable” size, then we say a method is “stable” in the presence of noise.

To assess this, let us assume that f(x) = 0. Then yi = 0 and consequently we know that pN−1(x) = 0.
Furthermore, if we choose ỹi randomly between −0.001 and 0.001, then ‖y− ỹ‖∞ = ‖ỹ‖∞ ≤ 0.001. We can
then estimate C as

C ≥ ‖pN−1 − p̃N−1‖∞
‖y − ỹ‖∞

=
‖p̃N−1‖∞

0.001
.

The computable term on the right hand side is only a lower bound for C because we consider only a single
realization of the random perturbation of the data.

(a) Using a set of N equidistant points xi with x1 = −1 and xN = 1, write a function that evaluates the
interpolating polynomial p̃N−1 for these xi and randomly chosen ỹi as specified above. Plot p̃N−1(x)
and visually evaluate the size of the error due to the inexact measurements, max−1≤x≤1 |pN−1(x) −
p̃N−1(x)| = max−1≤x≤1 |p̃N−1(x)| for a few different values of N . Plot the maximal error as a function
of N for a number of values of N in the range 1 . . . 30. Describe the qualitative behavior you observe
for the lower bound of C discussed above as N becomes larger.

(b) Repeat the experiment but with the interpolation points chosen as the roots of the Chebyshev poly-
nomial (if necessary shifted to the interval [−1, 1]).

(c) What conclusions can you draw about the suitability of higher order polynomial interpolation in the
presence of inaccurate data? How would piecewise linear interpolation fare in this context?

(30 points)

Problem 2 (Adaptive interpolation). Consider approximating the function f(x) = sin 1
x on the interval

[0.05, 1] with a piecewise linear function. If you plot this function on the interval, you will realize that this
is an example of a function that is nice and smooth in parts of its domain but not in other regions.
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(a) Write an interpolation procedure that starts with a single interval and iteratively replaces every interval
by its two halves.

For each step in this iteration, evaluate an approximation of the maximal error between the original
function f and your current piecewise linear approximation. Plot this error as a function of the number
of evaluation points you use for your current approximation.

(b) Write an adaptive interpolation procedure that starts with a single interval and iteratively finds the
interval that has the worst approximation (using your criterion of choice) and replaces it by its two
halves.

For each step in this iteration, evaluate an approximation of the maximal error between the original
function f and your current piecewise linear approximation. Plot this error as a function of the number
of evaluation points you use for your current approximation.

For both methods, show the interpolant ph you obtain with N = 129 evaluation points, along with the
location of these points.

Compare the two approaches. Which requires fewer function evaluations for a given error level (say, to
achieve an approximation quality of ‖f − ph‖∞ ≤ 10−6)? (30 points)

Problem 3 (Spline interpolation). Spline interpolation is typically used in cases where (i) f(x) is
expensive to evaluate, (ii) one would need f ′(x) for some purpose, but this is not available. In that case,
one would try to approximate f by a piecewise polynomial ph in such a way that d

dxp
h can be evaluated

everywhere – i.e., ph must be continuously differentiable.
One example is trying to find the root of a function f(x) (i.e., that x∗ for which f(x∗) = 0) using Newton’s

iteration that computes xk+1 = xk − f(xk

f ′(xk)
.

(a) Consider f(x) = xex−1. Use Newton’s method to compute its root x∗ to at least six digits of accuracy,
starting with x0 = 0.5. (In other words, I’m asking you to compute W (1) where W is Lambert’s W
function.)

(b) Write a procedure that computes a cubic spline approximation ph of f(x) using N equally spaced
points xi on the interval [0, 1]. Compute the root xN,∗ of ph to at least six digits of accuracy, starting
with x0 = 0.5. Demonstrate numerically that xN,∗ → x∗ as N →∞ and plot the error |xN,∗ − x∗| as
a function of N for N = 2 . . . 100.

(40 points)
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https://en.wikipedia.org/wiki/Lambert_W_function
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