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Background
● Existing biomedical imaging techniques for tumor diagnosis do not 

show what we are interested in, or do so only with drawbacks:

● What we need is a method that
a) shows actual tumor cells, not secondary effects of tumors
b) is harmless
c) yields high-resolution images
d) is mathematically stable (robust in the presence of noise)
e) is fast
f) is cheap

`
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General Setting of Inverse Problems
● We have data from several experiments made on a subject:

● We know how the system behaves when illuminated: We can 
predict the outcome of every experiment by a (possibly nonlinear) 
PDE:

Ai
q ,ui


i
=0       ∀i                        [e.g. A q ,u =q∇ u ,∇− f ,]
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General Setting of Inverse Problems
● We have data from several experiments made on a subject:

● We know how the system behaves when illuminated: We can 
predict the outcome of every experiment by a (possibly nonlinear) 
PDE.

In reality, the equations and boundary conditions for the particular 
application I will show results for are

−∇⋅D u  q  ∇ u ic k u q u  = 0     

−∇⋅Dv q ∇ v ic k v  q  v  =  q u

2Du q 
∂u
∂n
u  = S

2Dv q 
∂ v
∂n
 v  = 0
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General Setting of Inverse Problems
● We have data from several experiments made on a subject:

● We know how the system behaves when illuminated: We can predict 
the outcome of every experiment by a (possibly nonlinear) PDE:

● All experiments depend on a common set  q(x)  of distributed 
parameters (e.g. absorption and scattering coefficients)

● Goal: Have efficient tools to identify  q(x)  from all these 
measurements!

Ai
q ,ui


i
=0       ∀i                        [e.g. A q , u=q∇ u ,∇− f ,]
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Overview
● How do we formulate inverse problems?

● Why are inverse problems hard computationally?

● Nonlinear and linear solvers

● Inequality constraints and adaptive meshing

● Numerical examples for membrane displacement

● Numerical examples for refraction imaging

● Numerical example for optical tomography imaging of 
tumors

● Conclusions and outlook
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General Setting of Inverse Problems
● Goal: Have efficient tools to identify  q(x)  from all measurements!

● How: 

1) We can predict measurements if we knew  q

2) Starting with an initial guess, vary  q  until our predicted
    measurements match the actual measurements best

3) Compare measurements using an objective functional (e.g. a norm)

● Consequences:

The inverse problem is posed as a minimization problem!
The forward problem (i.e. the PDE) is only a side condition!
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The Maths
A model problem: Consider a membrane of variable thickness  
q(x)  subjected to a known force  f(x)
● z(x) measured deflection
● q(x) unknown coefficient
● u

q
(x) expected (predicted) displacement for coefficient  q(x)

● State equation:

Program: Determine the unknown coefficient by 

varying  q(x)  until we have found  u
q
(x)  that 

matches the observation  z(x)  best!

−∇⋅q∇ uq  = f             + B.C.



 
 10

   

The Maths

Formulation as a constrained minimization problem when multiple 
data sets are available:

minimize   J u ,q  = ∑ i=1

N
mi
M i ui

−zi
 r q

subject to     Ai
q ,ui

⋅=0,          i=1...N

Program: Determine the unknown coefficient by 

varying  q(x)  until we have found  u
q
(x)  that 

matches the observation  z(x)  best!
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● Have a mathematical framework that allows for such inversion problems

● Have efficient computational techniques for each step in this framework:
- nonlinear solvers
- inner linear solvers for forward/adjoint problems

- inclusion of bounds on parameters

- efficient discretizations
- error estimates and adaptivity for the forward/adjoint problems

- regularization techniques
- error estimates for the parameters

- algorithms that run in parallel and within the allowed time 

- yield optimal accuracy of the reconstructed parameter map despite the
  ill-posedness of the problem

Challenges
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The Maths
Lagrangian formulation:

Set  x = {u,λ,q},  introduce Lagrange function

For example, for a single Laplace problem:

Optimum then stationary point of  L(x):

L  x  = 
1
2
∑i=1

N
mi
M i ui

−zi
 r q∑i=1

N
Ai
q ,ui


i


∇ x L  x y  = 0   ∀ y
q∇ ,∇  = −u−z ,

q∇ u⋅∇ ,  = 0                   
q∇ u ,∇  =  f ,       

L x   = 
1
2
∥u−z∥2



2
∥q∥2q∇ u ,∇− f ,
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Solution of Optimality Condition

∇ x L  x y  = 0   ∀ y
q∇ ,∇  = −u−z ,

q∇ u⋅∇ ,  = 0                   
q∇ u ,∇  =  f ,       

Solution: Newton-type iteration on nonlinear continuous problem

● Discretize by FEM with different grids and ansatz spaces for  u/λ  
(fine mesh, Q

p
 elements)  and  q  (coarse mesh, DGQ

0
 elements)

● Solve for Newton direction by Schur complement formulation

● Use line search techniques to determine step length

● If sufficient progress on one grid, then evaluate a posteriori error 
estimator and refine state/adjoint and parameter grids

∇ x
2 L  xk xk , y  =  −∇ x L  xk y     ∀ y ,
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Solution of Optimality Condition
Solution of discretized Newton steps:

● Matrix representation of

is

● Can be very large (several 107), in particular with multiple 
experiments

● Symmetric but indefinite

● Extremely ill-conditioned:                             and up to  1013!

∇ x
2 L  xk xk , y  =  −∇ x L  xk y     ∀ y ,


M A B
AT 0 C
BT CT

R
u


q  = −
F u

F 
F q


  = Oh−6

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Solution of Optimality Condition
Rather: Use Gauss-Newton method:

● Drop B

● Consider Schur complement

● Much smaller systems (several 1000 to 10,000)

● Schur complement now positive definite

● Better condition number:                        instead of


M A B
AT 0 C
BT CT

R
u


q  = −
F u

F 
F q


  = Oh−4


RCT A−T M A−1Cq  = F q−CT A−1
Fu−MA−1 F 

                         Au  = F

−Cq

                        AT  = F u−M u

  = Oh−6

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Solution of Optimality Condition

S = R∑i
Ci

T Ai
−T M i Ai

−1Ci

Main problem now: invert

for δq. 

Challenges:

● S is still expensive to compute, and ill-conditioned

● Each multiplication with  S  requires  2N  solutions of the underlying 
PDE: May require several 10,000 to 100,000 PDE solutions!

● Preconditioning, multigrid anyone?
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● Have a mathematical framework that allows for such inversion problems

● Have efficient computational techniques for each step in this framework:
- nonlinear solvers
- inner linear solvers for forward/adjoint problems

- inclusion of bounds on parameters

- efficient discretizations
- error estimates and adaptivity for the forward/adjoint problems

- regularization techniques
- error estimates for the parameters

- algorithms that run in parallel and within the allowed time 

- yield optimal accuracy of the reconstructed parameter map despite the
  ill-posedness of the problem

Challenges
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Inequality Constraints

q0x  ≤ q x  ≤ q1 x
Often constraints like

are known. Including them can stabilize inversion, and make result 
physical.

Question: How can we use them?

Idea: After discretization, use an active-set-like strategy on parameters.
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Inequality Constraints
Approach: Before each Newton step, determine those parameters that
● are already at their bounds
● that we expect to move out of the feasible region (using a heuristic)

Fix these parameters, i.e. enforce  δq
i 
= 0  for them.

That means, solve

with reduced matrix and r.h.s. with some rows/columns deleted.

This procedure is also simple to perform even if S not known explicitly, but 
only through matrix-vector product.

Sq = −J ,              s.t. X q  =  0


Sq=  − J
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Mesh Refinement
At the end of each Gauss-Newton step:

● Check if we are still making sufficient progress on the present mesh

● If this is not the case, evaluate an error indicator and refine both the 
meshes on which we discretize the state/adjoint variables as well as the 
mesh for the parameter

● Derivation of error estimates is complicated by the ill-posedness of the 
problem (i.e. the lack of stability in the problem)

● Duality-based error estimates are a way out here:

J x−J xh  = 
1
2
∑K
u ,−hK jump term

                           ,u−uhK jump term

                          q ,q−qhK
                   R

u= f ∇⋅qh∇ uh      
=u−z∇⋅qh∇h

q=q∇ uh⋅∇h     

R=−
1
12
eq∇ eu ,∇ e
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Numerical Examples
● Steady-state membrane of variable stiffness, subjected to known 

(distributed) force: Measure deflection everywhere, and recover 
stiffness parameter

● Helmholtz equation: Excite material by injecting energy at one 
boundary, and measure at another boundary

● Optical tomography: Identify dye concentrations for cancer imaging 
using infrared light

A q , u  = q∇ u ,∇− f ,

m Mu−z   = 
1
2
∥u−z∥



2N  = 1

Ai
q ,ui


i
  = q∇ ui ,∇ i

−k i
2
ui , i

b.c.

mi
M i ui

−z i
  = 

1
2
∥ui
−z i
∥


2 ,           ⊂∂
N  ≫  1
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Laplace example

Exact solution generated from a discontinuous parameter:
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Laplace example

Same example, but this time with noise in the measurement:

Recovered coefficient  q
ε=1%

Recovered coefficient  q
ε=2%



 
 24

   

Laplace example

Results for different numbers of experiments
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Transmission tomography example

8 
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ry 4 different frequencies: k2=25, 30, 35 40 

Total:
32 different
experiments
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Transmission tomography example

After 5 Newton steps,
64 parameters

After 10 Newton steps,
61 parameters

After 15 Newton steps,
118 parameters

After 20 Newton steps,
235 parameters

After 25 Newton steps,
1290 parameters

After 30 Newton steps,
6016 parameters

Example of a 2D reconstruction using sound transmission
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Example of a 2D reconstruction using sound transmission

Grid for state/adjoint variables Grid for coefficient
(has 6016 cells, while a uniformly refined 
mesh of the same resolution would have 

65k cells)

Transmission tomography example
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Transmission tomography example
Numbers of parameters CG iterations per Newton step

● Number of CG iterations does not grow with number of 
parameters!

● Per experiment approx. 1,000 solves
        total of 30*16*32*2 = 30,000 solves of the underlying PDE

● However, initial steps relatively cheap since systems small

● Yet, at end high resolution with >6,000 parameters
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Optical tomography examples

Adaptive meshes for experimental cube:
● Illuminate a cube target with a number of different patterns
● Three targets at different depths
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Optical tomography examples

Adaptive meshes for experimental cube:
● Illuminate a cube target with a number of different patterns
● Three targets at different depths
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Scanning the pig

Experimental data obtained from a pig:

Experimental setup, a widened laser line scans the pig at 6 locations
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Scanning the pig

Experimental data obtained from a pig:

Illumination 
pattern

Fluorescent 
signal 

(amplitude)

Fluorescent 
signal (complex 

phase)
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Scanning the pig

Meshes used for state and adjoint variables

Solutions for various illumination positions
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Scanning the pig

Mesh used to discretize the 
unknown parameter

Reconstructed parameter 
(here: position of lymph node, 
later confirmed by a surgeon)

Results after 26 Newton iterations and approximately 10 minutes 
(~15,000 solutions of the underlying 3d PDE).



 
 35

   

Summary

● Inverse problems are challenging numerically 
because the solution of a PDE is only a 
subproblem

● Because they are so eminently important in 
practice, we need (and have) efficient algorithms 
for
- nonlinear and linear solvers
- bound constraints
- adaptive meshing techniques

● Using these methods, we can solve problems of 
a complexity that were intractable before

● For example, the resolution we achieve in optical 
tomography is one order of magnitude better 
than previously available in this field and much 
faster
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Outlook and Open Questions

Mathematical questions on experiments:

● What are experimental setups that maximize 
the available information content?

● How can we quantify information content?

● How can we maximize it?

This leads into experimental design where we 
want to optimize the outcome of our inverse 
problem:

Optimize the result of an (already very 
expensive) optimization problem!

(Requires ~109 PDE solutions)
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