Solutions to homework 1

Question 1: prove that a function \(f : X \rightarrow Y \) is continuous (calculus style) if and only if the preimage of any open set in \(Y \) is open in \(X \).

Proof:

First, assume that \(f \) is a continuous function, as in calculus; let \(U \) be an open set in \(Y \), we want to prove that \(f^{-1}(U) \) is open in \(X \).

If \(p \) is a point in \(f^{-1}(U) \), we must show there is a little open ball around \(p \) that is all contained in \(f^{-1}(U) \).

But \(f(p) \in U \) which is an open set, so there exists a ball \(B \) of radius \(r \) centered at \(f(p) \) and all contained in \(U \).

Continuity calculus style tells us that provided that we take a small enough radius, there is a ball \(C \) around \(p \) such that \(f(C) \) is contained in \(B \), and hence in \(U \). Which means that \(C \) is all contained in \(f^{-1}(U) \). So we are done with one side of the proof.
Now assume that for any open set in Y, its preimage via f is open. We want to show that f is a continuous function. Let p be a point in X, $f(p)$ the corresponding image in Y.

To show that f is continuous at p we must show that, given a ball B of radius ε around $f(p)$, there exists a ball C whose image is entirely contained in B.

But B in particular is an open set. Therefore $f^{-1}(B)$ is open. Therefore p is an interior point for $f^{-1}(B)$: there is a little ball C centered at p contained in $f^{-1}(B)$.

This implies that $f(C)$ is contained in B, which is what we needed to show.

Question 2: prove that a function $f : X \rightarrow Y$ is continuous (calculus style) if and only if the preimage of any closed set in Y is closed in X.

Proof: We want to exploit the previous exercise, and the fact that the complement of an open set is closed.
Assume f is continuous.

Let K be any closed set in Y.

Then $Y \setminus K$ is open.

Then $f^{-1}(Y \setminus K)$ is open by exercise 1.

But $f^{-1}(Y \setminus K) = X \setminus f^{-1}(K)$.

Hence $f^{-1}(K)$ is closed.

Now assume the preimage of any closed set is closed.

Let U be any open set in Y.

$Y \setminus U$ is closed.

Hence $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is closed.

Which implies that $f^{-1}(U)$ is open. Hence the preimage of any open set is open, and f is continuous by exercise 1.