1. Suppose \(F = 2xyi + (x^2 + nyz)j + y^2k \).

 A. For what number \(n \) does \(\text{curl}(F) = 0 \)?

 B. For this number \(n \), find \(f \) so that \(\nabla(f) = F \).

2. Let \(F = \langle 1 + \tan(x), x^2 + e^y \rangle \) be a force field. Let \(C \) be the boundary of the region enclosed by the parabola \(x = y^2 \) and the lines \(x = 1 \) and \(y = 0 \). Find the work done by \(F \) as a particle travels once around \(C \) in the counterclockwise direction.

3. Find a vector field \(F \) such that \(\int_C F \cdot dr = 0 \) whenever the endpoints of \(C \) both lie on the curve \(y = x^3 + x + 1 \).

4. Consider the surface \(S \) in \(\mathbb{R}^3 \) given parametrically by \(x = u \cos(v), y = u \sin(v), \) and \(z = u \). Let \((u, v) \) range through the domain \(D = \{(u, v)|0 \leq u \leq 1, 0 \leq v \leq 2\pi\} \).

 A. Graph \(S \). Mark the grid curves \(u = 1 \) and \(v = 0 \).

 B. Find the surface area (for \((u, v) \in D \)).

 C. Let \(C \) be the grid curve \(v = 0, 0 \leq u \leq 1 \). Find \(\int_C 1ds \). What physical quantity does this integral represent?

5. Suppose \(F = \langle yz, yz^2, z^3e^{xy} \rangle \). Suppose \(S \) is the part of the sphere \(x^2 + y^2 + z^2 = 5 \) above \(z = 1 \) oriented upwards. Find \(\int_S \text{curl}F \cdot dS \).

6. Suppose \(F = \langle 3x, xy, 2xz \rangle \). Suppose \(S \) is the boundary of the cube \(\{(x, y, z)|0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1\} \). Find the flux of \(F \) across \(S \).