Mathematics V1205y, Calculus IIIS/IVA

Sample Final:

There is a reasonably possibility of errors on this document, since I needed to finish it very quickly.

Name: ____________________________

1. Evaluate \(\int_0^1 \int_{\sqrt{y}}^{1} \sqrt{x^3 + 1} \, dx \, dy \).

 \(2(2^{3/2} - 1)/2 \)

2. Find the center of mass of the lamina that occupies the quarter-circle \(D = \{ x^2 + y^2 \leq 1, x \geq 0, y \geq 0 \} \) if the density is proportional to the square of the distance to the origin.

 \((8/5\pi, 8/5\pi) \).

3. Icecream fills the space below the sphere \(x^2 + y^2 + z^2 = a^2 \) and above the cone \(z = \sqrt{x^2 + y^2} \). The density of the icecream is given by the function \(f(x, y, z) = z \).
 Find the mass of the icecream using spherical coordinates.

 \(\pi a^4 / 8 \).

4. Evaluate the integral \(\int \int_{R} \sin(9x^2 + 4y^2) \, dA \) where \(R \) is the region in the \(xy \)-plane bounded by \(9x^2 + 4y^2 = 1 \).

 \(\pi(1 - \cos(1))/24 \).

5. Let \(F(x, y) = -\frac{y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j} \) and let \(C \) be the curve \(x^2 + y^2 = 1 \) oriented clockwise. Evaluate the line integral \(\int_C F \cdot dr \).

 \(2\pi \)

6. Find the simple closed curve \(C \) which gives the maximal value of the following integral and explain why it yields the maximal value:

 \(\int_C (x^5 - 6y + y^3) \, dx + (y^4 + 6x - x^3) \, dy \).

 Green: \(x^2 + y^2 \leq 4 \).

7. Consider the vector field \(F(x, y, z) = 2xi + 2yj + 2zk \).
 a) Compute \(\text{curl}(F) \).

 b) If \(C \) is any path from \((0, 0, 0)\) to \((a_1, a_2, a_3)\) and \(a = a_1i + a_2j + a_3k \), prove that \(\int_C F \cdot dr = a \cdot a \).

 0, Down 1-to-0 thm.
8. Sketch the surface given parametrically by \(r(u, v) = (\cos(v), \sin(v), u) \) over the domain \(D = \{-1 \leq u \leq 1, 0 \leq v \leq 2\pi\} \). Find the normal vector at the point when \((u, v) = (0, \pi/4) \).

pg 1091 IV, \(n = (\sqrt{2}/2, \sqrt{2}/2, 0) \).

9. Suppose \(F(x, y, z) = zk \) and \(S \) is the part of the plane \(z = x \) lying over the square \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \). Find the flux of \(F \) across \(S \).

\(1/2 \).

10. Suppose \(F(x, y, z) = (x, y, z) \) and \(S \) is the surface \(x^2 + y^2 + z^2 = 2 \) with \(z \geq 0 \). Find \(\iint_S F \cdot dS \).

\(4\sqrt{2}\pi \)

11. Suppose \(F(x, y, z) = (xe^z - 3y)i + (ye^{z^2} + 2x)j + (x^2y^2z^2)k \) and \(S \) is the portion of the paraboloid \(z = 4 - x^2 - y^2 \) where \(z \geq 0 \). Compute \(\iint_S \text{curl}(F) \cdot dS \).

\(20\pi \)

12. Let \(E \) be the region enclosed by the paraboloid \(z = 2 - x^2 - y^2 \) and the plane \(z = 1 \). Let \(S \) be the surface bounding \(E \). Let \(F(x, y, z) = \langle z \tan^{-1}(y^2), z^3\ln(x^2 + 1), z \rangle \). Find the flux of \(F \) across \(S \); in other words find \(\iint_S F \cdot dS \).

\(3\pi/2 \).

13. If \(a + bi = (\sqrt{3} + i)^11 \), solve for \(a \) and \(b \).

\(a = 2^{10}\sqrt{3}, b = -2^{10} \).

14. Suppose \(f(t) = 1/(t^2 - i) \).

A. If \(f(t) = a(t) + bi(t)i \), solve for \(a(t) \) and \(b(t) \).

B. Find the absolute value \(|f(t)| \). For which value of \(t \) is \(|f(t)| \) maximal?

C. Sketch a parametric graph of \(f(t) \) on the complex plane.

\(a(t) = t^2/(t^4 + 1), b(t) = 1/(t^4 + 1) \).

15. Show that the set of functions \(\{f(t) = e^{ikt}\} \) are orthogonal.

Niev pg 177

16. Given two complex vectors \(\vec{v}_1 \) and \(\vec{v}_2 \), prove that \(w_1 = v_1 \) and \(w_2 = v_2 - \text{proj}_{w_1}v_2 \) are orthogonal.

Niev pg 130

17. Find the best line approximating \(f(x) = x^3 \) on the interval \([1, 2] \). Hint: using the orthonormal basis \(w_1 = 1 \) and \(w_2 = \sqrt{12}(x - 3/2) \) with respect to the inner product \(\langle f(x), g(x) \rangle = \int_1^2 f(x)g(x)dx \), it is only necessary to compute two integrals.

Simplify \(\left(\int_1^2 x^3dx \right)1 + \left(\int_1^2 x^3 \sqrt{12}(x - 3/2)dx \right)\sqrt{12}(x - 3/2) \).
18. A. Find the complex fourier series of $f(t) = \sin^3(t)$.

B. Find the real fourier series of $f(t) = \sin^3(t)$.

A. $(-1/8i)e^{3it} + (3/8i)e^{it} + (-3/8i)e^{-it} + (1/8i)e^{-3it}$.

B. $(-1/4)\sin(3t) + (3/4)\sin(t)$.

19. Suppose $f(t)$ is the function of period 2π such that $f(t) = t/2$ if $-\pi < t < \pi$. Find the real fourier series of $f(t)$ from scratch.

$$RFS = \sum_{n=1}^{\infty} [(-1)^{n+1}/n] \sin(nt).$$

20. Suppose $f(t)$ is the function of period 2π such that $f(t) = 0$ if $-\pi < t < 0$ and $f(t) = t$ if $0 < t < \pi$. To what value does the real fourier series of $f(t)$ converge when $t = \pi$. Hint: this is an extremely easy short problem.

$\pi/2$.