1. Let \(f(x) = \begin{cases} e^x + e^{-1/x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \) and assume that \(f^{(n)}(0) = 1 \) for \(n = 0, 1, 2, 3, \ldots \).

(a) What is the Maclaurin series for \(f \)?

(b) What is the interval of convergence of the Maclaurin series?

(c) For what values of \(x \) does \(f(x) \) equal the sum of the Maclaurin series?
(a) Find the Maclaurin series for the function \(f(x) = x \cos^2 x \). Write the result in closed form—as a sum \(\sum_{n=0}^{\infty} a_n x^n \). (Hint: \(\cos^2 x = \frac{1}{2}(1 + \cos(2x)) \).)

(b) Find the sum of the series \(\sum_{n=0}^{\infty} \left(\frac{x^2 + 1}{3} \right) ^n \) as a function of \(x \). What is the interval of convergence of the series.
3. (a) Find the first 5 terms of the Maclaurin series of the function \(f(x) = (1 - 3x^2)^{-1/3} \).

(b) If the first 6 terms of the Maclaurin series of the function \(f(x) = \frac{1}{\sqrt{1 - x^2}} \) are

\[
(1 - x^2)^{-1/2} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \frac{5}{16}x^6 + \frac{35}{128}x^8 + \frac{63}{256}x^{10} + \ldots,
\]

find the first 7 terms of the Maclaurin series of the function \(f(x) = \arcsin(x) \).
4. The Maclaurin series for \(f(x) = \cos x \), \(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \), converges for all \(x \), \(-\infty < x < \infty \). Show that the series converges to \(f(x) = \cos x \) for all \(x \).
(a) Find the Taylor series expansion for $f(x) = \ln(x)$ at $a = 4$. Write the result using summation notation.

(b) Find the first four terms of the Taylor series expansion for $f(x) = x^2 \ln(x)$ at $a = 4$.
6. For what values of x does the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$ converge.

7. Find the Taylor series of $f(x) = x^3 - 2x + 4$ at $a = 2$.