Exam 2 Continuity

1. Use the \(\varepsilon - \delta \) definition of continuity to show that that \(f(x) = x^2 + 1 \) is continuous at \(x = 1 \).

\[
|f(x) - f(1)| = |x^2 + 1 - 2| = |x^2 - 1| = |x + 1||x - 1| \leq \frac{5}{2} |x - 1| \quad \text{if} \quad |x - 1| < \frac{1}{2}
\]

Then \(\forall \varepsilon > 0, \exists \delta = 2\varepsilon/5 \) such that \(|f(x) - f(1)| < \varepsilon \) when \(|x - 1| < \min\left[\frac{1}{2}, 2\varepsilon/5\right] \)

2. Use whatever method you like to show \(f \) is not continuous for all \(x \) if

\[
f(x) = \begin{cases}
 1 & \text{if } |x - 1| < 1 \\
 0 & \text{if } |x - 1| \geq 1
\end{cases}
\]

Since \(f(x) = 1 \) if \(0 < x < 2 \) and \(f(x) = 0 \) otherwise, the sequences \(x_n = 2 - \frac{1}{n} \) and \(y_n = 2 + \frac{1}{n} \) both converge to \(x = 2 \), but \(f(x_n) \to 1 \), while \(f(y_n) \to 0 \). Then by the sequence definition of continuity, \(f \) is discontinuous at \(x = 2 \). A similar argument shows \(f \) is discontinuous at \(x = 0 \).

3. Tell whether the following statements are true or false

If the statement is false, give an example that shows it is false.
If the statement is true, state a result that supports that conclusion.

a) If \(f \) is continuous and injective on \(D \) then \(f \) must be strictly monotone.

This is true. It is theorem 3.14 in chapter 3.

b) If \(f \) is continuous on \(\text{dom} f \) and \(\text{dom} f \) is bounded, then \(\{f(x_n)\} \) must be bounded for any \(\{x_n\} \subset \text{dom} f \).

This is false. If \(f(x) = \frac{1}{x} \) is continuous on the bounded domain \((0, 1) \) and \(x_n = \frac{1}{n} \) is included in \((0, 1) \) but \(f(x_n) = n \) is not bounded.

4. Suppose \(f \) is continuous on \([0, 2]\) and \(0 \leq f(x) \leq 2 \) for all \(x \), \(0 \leq x \leq 2 \). Show that \(f(x) = x \)

for some \(x, 0 \leq x \leq 2 \).

Let \(g(x) = x - f(x) \) Then \(g \) is continuous on \([0, 2]\) and since \(0 \leq f(x) \leq 2 \), it follows that \(g(0) = -f(0) \leq 0 \), while \(g(2) = 2 - f(2) \geq 0 \). Then by the intermediate value theorem, we know that for some \(x \) in \([0, 2]\) \(g(x) = 0 \), which is to say, \(f(x) = x \).

5. Tell which of the following functions are continuous and which are uniformly continuous on the domains indicated

(a) \(\frac{1}{x(1-x)} \) is continuous on \((0, 1)\) by arithmetic with continuous functions theorem but the limits at \(x = 0 \) and \(x = 1 \) do not exist so it is not uniformly continuous.
(b) \(\frac{x}{1+x^2} \) is continuous on \((0, \infty)\) by arithmetic with continuous functions theorem and the limits at \(x = 0\) and \(x = \infty\) both exist so it is also uniformly continuous.

6. Suppose \(f\) is continuous at \(x_0 \in \text{dom } f\) and \(f(x_0) = y_0\). Then explain why every point of the set \(\{x : y_0 - 1 < f(x) < y_0 + 1\}\) is an interior point.

This is the topological defn of continuity. For \(\varepsilon = 1\) there is a \(\delta > 0\) such that \(f(x) \in (y_0 - 1, y_0 + 1)\) when \(x \in N_\delta(x_0)\).

That is to say \(\{x : y_0 - 1 < f(x) < y_0 + 1\} = N_\delta(x_0) = (x_0 - \delta, x_0 + \delta)\) is open.

7. Let \(S = \{x : 0 \leq x^2 \leq 4\}\) and suppose \(\{x_n\} \subset S\). Show that \(\{x_n\}\) contains a subsequence converging to a point of \(S\). Be sure to justify all your statements.

\(S = \{x : 0 \leq x^2 \leq 4\} = \{0 \leq x \leq 2\}\) is a closed bounded set. If \(\{x_n\} \subset S\) then \(\{x_n\}\) is bounded and contains a convergent subsequence by the B-W theorem. Since \(S\) is closed, the limit point belongs to \(S\).

8. Suppose \(f\) is strictly monotone on \(\text{dom } f\). Let \(x, y \in \text{dom } f\). If \(x \neq y\) then \(x < y\) or \(y < x\) and it follows that \(f(x) < f(y)\) or else \(f(x) > f(y)\). In any case, \(f(x) \neq f(y)\). What is this a proof of?

This is a proof of the fact that if \(f\) is strictly monotone then \(f\) is injective.