36*) Let \(f \in \mathbb{Z}[x] \) be a monic polynomial of degree \(n \) and \(\alpha \in \bar{\mathbb{Q}} \) with \(f(\alpha) = 0 \). Let \(g \) be the minimal polynomial of \(\alpha \).

a) Show that \(g \in \mathbb{Z}[x] \).

b) Let \(N \) be the nullspace of the matrix \((1, \alpha, \alpha^2, \ldots, \alpha^n)\). Show that the coefficient vector of \(g \) is an element of \(N \).

c) Suppose \(\alpha \) is given approximatively by a (floating point or \(p \)-adic) number \(\beta \). Let \(B \) be a basis of the nullspace of \((1, \beta, \beta^2, \ldots, \beta^n)\), consisting of integer vectors (for example obtained by scalar multiplication and rounding). Show that for a sufficiently good approximation of \(\beta \) the coefficient vector of \(g \) lies in the \(\mathbb{Z} \)-span of \(B \) (this span is a lattice).

d) Let \(B \) as in part c). Show that for a suitable (weighted) norm on \(\mathbb{R}^{n+1} \) the coefficients of \(g \) form a shortest vector in the lattice spanned by \(B \).

e) Assuming a method to find the shortest vectors in a lattice, describe a method to factor a polynomial \(f \in \mathbb{Z}[x] \) into irreducible factors, based on computing minimal polynomials of roots.

37) Compute a reduced basis for the lattice spanned by the rows of the matrix

\[
\begin{pmatrix}
787 & 843 & -533 \\
-1910 & -2045 & 1294 \\
-220 & -236 & 147
\end{pmatrix}
\]

Compare your result with that obtained by “proper” LLL reduction, using the GAP command LLLReducedBasis.

38) Let \(S \) be a positive definite symmetric bilinear form on \(\mathbb{R}^n \) (with a corresponding norm \(\|a\|_S = \sqrt{S(a,a)} \)). We want to find vectors in \(\mathbb{Z}^n \subset \mathbb{R}^n \) that are short with respect to this norm (and not necessarily with respect to \(\|\cdot\|_2 \)).

a) Show that there is a linear transformation \(\varphi: \mathbb{R}^n \rightarrow \mathbb{R}^n \), such that \(\|a\|_S = \|\varphi(a)\|_2 \).

b) Show that \(L = \{\varphi(l) \mid l \in \mathbb{Z}^n \} \) is a lattice in \(\mathbb{R}^n \) and that short vectors in \(L \) with respect to \(\|\cdot\|_2 \) correspond to short vectors in \(\mathbb{Z}^n \) with respect to \(\|\cdot\|_S \).

c) Find vectors in \(\mathbb{Z}^3 \) that are short with respect to the scalar product

\[
S(x, y) = x^T A y \quad \text{with} \quad A = \begin{pmatrix}
9 & 15 & -6 \\
15 & 41 & 46 \\
-6 & 46 & 209
\end{pmatrix}
\]
39) a) Let S be a positive definite symmetric bilinear form on \mathbb{R}^n, given by (as in problem 38) the matrix A (this matrix is called the Gram matrix for S with respect to the standard basis). Let $C \in \mathbb{R}$. Show that there are bounds $c_i = c_i(C)$ (depending on A and C) so that if $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ with $S(\mathbf{x}, \mathbf{x}) = \mathbf{x}^T A \mathbf{x} \leq C$, then $|x_i| \leq c_i$.

b) Let B be another \mathbb{Z}-basis of the lattice \mathbb{Z}^n given by the columns of the matrix $B \in \mathbb{Z}^{n \times n}$. Let $D = B^T \cdot A \cdot B$ the matrix for the form S with respect to the basis B. Show that it is also possible to compute the shortest vectors using the basis B and the matrix D instead.

c) Let

$$A = \begin{pmatrix} 44 & -2 & -16 \\ -5 & 6 & 0 \\ -15 & -1 & 6 \end{pmatrix}.$$

Determine all vectors in \mathbb{Z}^n with $S(\mathbf{x}, \mathbf{x}) \leq 3$.

Note The .remainder component of the result of LLLReducedGramMat (see the online help or the manual) contains the Gram matrix for S with respect to a basis reduced with respect to S. By b) one can work in this new basis.

40) Find a combination of the numbers

$$276, 1768, 1993, 2536, 4251, 4884, 5020, 5347, 7401, 9072$$

That sums up to 33164.

Hint: The command

```maple
m:=IdentityMat(11,1);;m[[1..11]][11]:=l;
```

creates an identity matrix whose 11th column in rows 1...10 contains the values in the list l.

Problems marked with * are bonus problems for extra credit.

From April 7 on, we will also meet Mondays, at 9am in Engineering B103 to make up for lost lectures.