6) Let \(F \) be a field and \(f, g \in F[x, y] \). Suppose that \((x_0, y_0)\) is a common solution to \(f(x, y) = 0 \), \(g(x, y) = 0 \).
 a) Show that \(y_0 \) must be a root of \(\text{res}_y(f(x, y), g(x, y)) \).
 b) Describe a method, based on a), that solves a system of polynomial equations by first eliminating all variables but one using resultants, then solves this polynomial in one variable, and finally uses back-substitution to find all solutions.
 c) Use the method of b) to find all rational solution to the following system of equations:
 \[
 \{x^2y - 3xy^2 + x^2 - 3xy = 0, x^3y + x^3 - 4y^2 - 3y + 1 = 0\}
 \]

The GAP functions \texttt{Resultant} and \texttt{Factors} might be helpful. See the online help for details.

7) Let \(F \) be a field and \(f(x), g(x) \in F[x] \). Suppose that \(\alpha, \beta \in \bar{F} \) (the algebraic closure) such that \(f(\alpha) = 0, g(\beta) = 0 \).
 a) Show that \(\text{res}_y(f(x - y), g(y)) \) has a root \(\alpha + \beta \). (Note: Similar expressions exist for \(\alpha - \beta, \alpha \cdot \beta \) and \(\alpha/\beta \).)
 b) Construct a polynomial \(f \in \mathbb{Q}[x] \) such that \(\mathbb{Q}[x]/(f(x)) \cong \mathbb{Q}(\sqrt{3}, \sqrt{2}) \).

8) Let \(F \) be a perfect field, \(f(x) \in F[x] \) irreducible, \(K \supseteq F \) the splitting field of \(f \) over \(F \) and \(\theta \in K \) a root of \(f \). We extend the elements of \(\text{Gal}(K/F) \) to \(K[x] \) by acting on the coefficients of a polynomial. (So for example if \(\sigma \) is complex conjugation then \(\sigma(x^3 + ix + 2) = x^3 - ix + 2 \).) For \(g \in K[x] \) define the Norm of \(g \) as:
 \[
 N(g) = \prod_{\sigma \in \text{Gal}(K/F)} \sigma(g)
 \]
 a) Show that \(N(g) \in F[x] \).
 b) For \(g \in F(\theta)[x] \) define a polynomial \(\tilde{g} \in F[x, y] \) by substituting \(y \) for \(\theta \).
 Show that \(N(g) = \text{res}_x(f(y), \tilde{g}(x, y)) \).
 c) Suppose that \(g \) is given as in b) and that \(\gamma \) is a root of \(g \) in the algebraic closure. Show that \(\gamma \) is a root of \(N(g) \).
 d) Let \(\alpha \) be a root of \(x^3 + 2 \) over \(\mathbb{Q} \) and \(\beta \) a root of \(x^2 + \alpha \cdot x + \alpha^2 \) over \(\mathbb{Q}(\alpha) \). Compute a rational polynomial with root \(\alpha \).
 (Note: This approach permits to reduce iterated algebraic extensions to simple extensions.)

9) The discriminant of a polynomial \(f \in F[x] \) of degree \(m \) with leading coefficient \(a \) is defined as
 \[
 \text{disc}(f) = (-1)^{\frac{m(m-1)}{2}} \text{res}(f(x), f'(x))/a
 \]
 where \(f'(x) \) denotes the derivative as defined in Analysis.
 a) Show that \(\text{disc}(f) = 0 \) if and only if \(f \) has multiple roots (i.e. a factor \((x - \alpha)^2 \) over the complex numbers. (Hint: Proposition 13.33 in Dummit&Foote.)
 b) Let \(f(x) \in \mathbb{Z}[x] \) be irreducible. Show that there are only finitely many primes \(p \), such that the reduction of \(f \) modulo \(p \) has multiple roots.
 c) Determine all such primes for the polynomial \(x^7 + 15x^6 + 12 \).