22) Let $G = D_8$ the group of symmetries of the square and $H = Q_8$ the quaternion group defined in problem 8. Both groups have order 8.
 a) Show (briefly) that both G and H have order 8, 5 conjugacy classes, and an abelian factor group isomorphic to $C_2 \times C_2$.
 b) Determine the irreducible characters of $C_2 \times C_2$.
 c) Show that both G and H have 4 irreducible characters of degree 1 and one character of degree 2. Using the result of b), determine the irreducible characters of degree 1.
 d) Show that G and H have (up to permuting characters or classes) have the same character table.

23) Let G be a finite group and e be the exponent of G, that is the least common multiple of all element orders in G. Let ϵ be a primitive e-th root of unity.
 a) Show that for any character χ of G and any $g \in G$ we have that $\chi(g) \in \mathbb{Q}(\epsilon)$.
 b) Show that for any character χ of G and any $g \in G$ we have that $\chi(g^{-1}) = \overline{\chi(g)}$, with $\overline{\cdot}$ denoting complex conjugation.
 (Hint: A theorem from linear algebra shows that every matrix can be upper-triangulized, if the characteristic polynomial splits. What does this say about the eigenvalues of g and g^{-1}?)

24) Let V, W be K vector spaces of dimensions m, respectively n, with bases $\{v_i\}_{i=1}^m$, respectively $\{w_j\}_{j=1}^n$. We consider the tensor product $V \otimes W$ as an $m \cdot n$-dimensional vector space with basis vectors denoted as $v_i \otimes w_j$ for $1 \leq i \leq m, 1 \leq j \leq n$ and define the linear map $\otimes: V \times W \rightarrow V \otimes W$ by

$$\otimes:\left(\sum_i \lambda_i v_i, \sum_j \mu_j w_j\right) \mapsto \sum_{i,j} \lambda_i \mu_j (v_i \otimes w_j).$$

(This construction has been introduced in 567.)

Now suppose that for a group G we have that V, W are KG-modules. We define a map $(V \otimes W) \times G \rightarrow V \otimes W$ by setting

$$\left(\sum_{i,j} \lambda_{i,j} v_i \otimes w_j\right) g := \sum_{i,j} \lambda_{i,j} (v_i g \otimes w_j g).$$

(Note that the \otimes on the left hand side is a symbol for basis vectors, while it is the linear map $V \times W \rightarrow V \otimes W$ on the right hand side.)
 a) Show that for arbitrary $v \in V, w \in W$ and $g \in G$ we have that

$$(v \otimes w)g = vw g \otimes w g$$

b) Show that with this definition $V \otimes W$ becomes a KG module, that is G acts on $V \otimes W$.
 c) Give an example, showing that the property in a) does not hold if g is replaced by arbitrary elements of KG.