29) Show that two 3×3 matrices are similar if and only if they have the same characteristic polynomial and the same minimal polynomial. Give a counterexample to this assertion for 4×4 matrices.

30) Determine the characteristic and the minimal polynomial of the following matrix over \mathbb{F}_2:

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0
\end{pmatrix}
$$

31) Let

$$
A := \begin{pmatrix}
-3 & -5 & 6 \\
-16 & -19 & 24 \\
-16 & -20 & 25
\end{pmatrix}, \quad B := \begin{pmatrix}
1 & 1 & -1 \\
0 & 2 & -1 \\
0 & 1 & 0
\end{pmatrix}
$$

a) Determine the rational normal form of A and find an invertible matrix $Q \in \mathbb{Q}^{3 \times 3}$ such that $Q^{-1}AQ$ is in rational normal form.
b) Determine the characteristic polynomial and the minimal polynomial of A.
c) Show that A and B are similar.
d) Find an invertible matrix $P \in \mathbb{Q}^{3 \times 3}$ such that $P^{-1}AP = B$.

32) Show that $x^6 - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)$ over \mathbb{F}_5. Using this determine (representatives of) the conjugacy classes of $\text{GL}_4(5)$ of elements of order 2, 3, or 6.

33) Let F be a field and let $A \in F^{n \times n}$. Show that $A \sim A^T$.

34) Compute the Jordan Canonical Form of

$$
A := \begin{pmatrix}
1 & 3 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 18 & -5 & 0 & 6 & -25 & 0 & -2 \\
0 & 64 & -18 & 0 & 24 & -100 & 0 & -8 \\
-2 & 6 & 0 & 2 & 0 & -1 & -2 & 0 \\
0 & 116 & -34 & 0 & 43 & -170 & 0 & -14 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 45 & -13 & 0 & 15 & -65 & 1 & -5 \\
0 & 322 & -94 & 0 & 114 & -470 & 0 & -37
\end{pmatrix}
$$

You may use a computer algebra system for calculating matrix powers and nullspaces.
Computing the Jordan Canonical Form

Given a matrix $A \in F^{n \times n}$ whose characteristic polynomial splits into linear factors we want to determine its Jordan Canonical form as well as a transforming matrix. We let $K^i = \ker(A - \lambda \cdot I)^i$ and observe that the basis vectors for a basis in JCF that are at position i in a block are in K^i but not in K^{i-1}. We call K^n the generalized eigenspace for λ.

1. Determine the Eigenvalues λ_k of the matrix A (for example as roots of the characteristic polynomial). For each eigenvalue λ perform the following calculation (which gives a basis of the generalized eigenspace of λ, the whole basis will be obtained by concatenating the bases obtained for the different λ_k).

 Again we write $K^i = \ker(A - \lambda \cdot I)^i$.

2. Calculate $e_i = \dim K^i$ until the sequence becomes stationary. (The largest e_i is the dimension of the generalized eigenspace.)

3. Let $f_i = e_i - e_{i-1}$. Then e_i gives the number of Jordan blocks that have size at least i. (As long as we only want to know the Jordan form, we thus could stop here.)

 We now build a basis in sequence of descending i. Let $B = []$ and $i = \max\{i \mid f_i > 0\}$.

4. (Continue growing the existing Jordan blocks) For each vector list (s_1, \ldots, s_m) in B, append the image $(A - \lambda \cdot I) \cdot s_m$ of its last element to the list.

5. (Start new Jordan block of size i) If $f_i - f_{i-1} = m > 0$ (then the images of the vectors obtained so far do not span K^i) let $W = \text{Span}(K^{i-1}, s_1, \ldots, s_k)$ where the s_j run through the elements in all the lists obtained so far. Extend a basis of W to a basis of K^i by adding m linearly independent vectors b_1, \ldots, b_m in $K^i - K^{i-1}$ to it.

 The probability is high (why?) that any m linear independent basis vectors of K^i fulfill this property. To verify it, choose a basis for K^{i-1}, append the s_j and then append the b_i. Then show that the resulting list is linearly independent.

 (The generic method would be to extend a basis of W to a basis of K^i and take the vectors by which the basis got extended.)

6. For each such vector b_i add a list $[b_i]$ to B.

7. If the number of vectors in the lists in B is smaller than the maximal e_i, then decrement i and go to step (4).

8. Concatenate the reverses of the lists in B. This is the part of the basis corresponding to eigenvalue λ.
For example, let

\[
A := \begin{pmatrix}
59 & -224 & 511 & -214 & 4 \\
16 & -61 & 139 & -58 & 1 \\
6 & -24 & 13 & -20 & 0 \\
13 & -52 & 110 & -43 & 0 \\
13 & -52 & 110 & -43 & 0
\end{pmatrix}.
\]

Its characteristic polynomial is \((x - 1)^4\). We get the following nullspace dimensions and their differences:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(e_i = \dim K^i)</th>
<th>(f_i = e_{i+1} - e_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

At this point we know already the shape of the Jordan Canonical form of \(A\) (2 blocks of size 1 or larger, 2 blocks of size 2 or larger, 1 block of size 3 or larger. I.e. One block of size 2 and one block of size 3), but let us compute the explicit base change:

We start at \(i = 3\) and set \(B = \emptyset\). We have that \(K^3 = \mathbb{R}^5\) and

\[
K^2 = \text{Span}(4, 1, 0, 0, 0)^T, (-15/2, 0, 1, 0, 0)^T, (3, 0, 0, 1, 0)^T, (0, 0, 0, 0, 1)^T,
\]

As \(f_3 = 1\) we need to find only one basis vector and pick \(b_1 := (1, 0, 0, 0, 0)^T\) as first basis vector (an almost random choice, we only have to make sure it is not contained in \(K^2\), which is easy to verify) and add the list \([b_1]\) to \(B\).

In step \(i = 2\) we first compute the image \(b_2 := (A - 1)b_1 = (58, 16, 6, 13, -4)^T\) and add it to the list.

Furthermore, as \(f_2 > f_3\), we have to get another basis vector in \(K^2\), but not in the span of \(K^3\) and \(b_2\). We pick \(b_3 = (4, 1, 0, 0, 0)^T\) from the spanning set of \(K^2\), and verify that it indeed fulfills the conditions. We thus have \(B = [b_1, b_2, [b_3]]\).

In step \(i = 1\) we now compute images again \(b_4 := (A - 1)b_2 = (48, 12, 4, 10, 0)^T\) and (from the second list) \(b_5 := (A - 1)b_3 = (8, 2, 0, 0, -4)^T\).

As \(f_1 = f_2\) no new vectors are added.

As a result we get \(B = [b_1, b_2, b_4, b_5, b_3]\).

Finally we concatenate the reversed basis vector lists and get the new basis \([b_4, b_2, b_1, b_5, b_3]\).

We thus have the base change matrix

\[
S := \begin{pmatrix}
48 & 58 & 1 & 8 & 4 \\
12 & 16 & 0 & 2 & 1 \\
4 & 6 & 0 & 0 & 0 \\
10 & 13 & 0 & 0 & 0 \\
0 & -4 & 0 & -4 & 0
\end{pmatrix}.
\]

It is easily verified that \(S^{-1}AS = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}\).