40) a) Let \(a, b \) be elements of a poset \(P \). Prove that
\[
\mu(a, b) = \sum_{i \geq 0} (-1)^i c_i,
\]
where \(c_i \) is the number of chains \(a = x_0 < x_1 < \cdots < x_i = b \). (Hint: Show that the right hand side fulfills the defining property.)
b) For a poset \(P \), let \(P^* \) be the poset obtained by reversing the order relation (that is \(x \leq_P y \) iff \(y \leq_P x \)). Conclude that \(\mu_{P^*}(a, b) = \mu_P(b, a) \).

40a) (For those who have seen algebraic topology). For a poset \(P \) with a global minimal element \(0 \) and a global maximal element \(1 \), we define a simplicial complex \(\Delta(P) \), called the order complex, as follows: The elements of \(P \) are the vertices of \(\Delta(P) \), the chains of \(P \) are the faces. Show that \(\mu_P(0, 1) = \chi(\Delta(P)) - 1 \), where \(\chi \) is the ordinary Euler characteristic.

41) Determine \(\mu(0, 1) = \mu((1), D_8) \) for the lattice of subgroups of \(D_8 \), the dihedral group of order 8, given on the side.

42) a) Let \(X \) be a set and assume \(S \) is partitioned in two different ways into \(m \) cells:
\[
X = A_1 \cup A_2 \cup \cdots \cup A_m = B_1 \cup \cdots \cup B_m,
\]
that is \(A_i \cap A_j = \emptyset = B_i \cap B_j \) if \(i \neq j \). Assume that any \(k \) of the \(A_i \) intersect at least \(k \) of the \(B_j \). Show that it is possible to find a simultaneous set of \(m \) representatives for the two partitions.
b) Let \(G \) be a finite group and \(S \leq G \) a subgroup (not necessarily normal), show that it is possible to find a set of \([G : S]\) of elements that are simultaneously representatives of the right cosets and of the left cosets of \(S \).

43) Show (by constructing a concrete counterexample) that, if sets \(A_1, \ldots, A_{n-1} \subset X \) have an SDR \(a_1, \ldots, a_{n-1} \), and (by adding one more set \(A_n \subset X \)) the enlarged collection \(A_1, \ldots, A_n \subset X \) also affords an SDR, it might not be possible to extend \(a_1, \ldots, a_{n-1} \) (by adding a further element) to an SDR of \(A_1, \ldots, A_n \).