61) Factorize 12968419 with the quadratic sieve, using the factor base 3, 5, 7, 19, 29 and a sieving interval of length 2 \cdot 80.

62*) Show that if \(n \) is odd, composite and not a prime power, then at least half of the pairs \(x, y \) with \(0 \leq x, y < n \) and \(x^2 \equiv y^2 \pmod{n} \) have \(1 < \gcd(x - y, n) < n \).

63) Suppose that \(n \) is a number that has a prime factor \(p \), such that \(p - 1 \) is a product of small primes.
 a) Let \(k = 2^{e_2}3^{e_3} \cdots p_k^{e_k} \) a product of powers of the first \(k \) primes (for example let \(k \) be the LCM of the first \(m \) numbers). Show that if \(p - 1 | k \) then \(\gcd(a^k - 1, n) \geq p > 1 \) for any \(a \) coprime to \(n \).
 b) Use this approach to factor 387598193 into prime numbers, using a base \(a = 2 \) and \(k = \text{lcm}(2,3,\ldots,8) \). (This method is also due to Pollard and is called the \(p - 1 \)-method. A generalization is the Elliptic Curve Factorization Algorithm by H. Lenstra, which is the best known “all-purpose” method, if the number has smaller prime factors.)

64) Use the principle of inclusion/exclusion to give a formula for the number of squarefree integers less than or equal to \(n \).

65) Calculate \(\pi(150) \) using Legendre’s formula.

Problems marked with a * are bonus problems for extra credit.

The quadratic sieve in GAP

The \texttt{factint} share package for GAP implements (among other) the quadratic sieve factoring algorithm and provides a better general method for \texttt{Factors}. This package should load automatically (it is installed on the PCs in the lab and should also be available if you installed GAP from a CD you got from me). (Note: Since \texttt{factint} installs a better method for \texttt{Factors}, you cannot compare the performance of \texttt{Factors} with and without this package loaded.) You can get information about the factorization process by setting

\[
gap> \text{SetInfoLevel(IntegerFactorizationInfo,2);}
\]

The function \texttt{FactorsMPQS} implements the multipolynomial quadratic sieve (it uses initially Pollard’s \(\rho \)-method to get smaller factors). For example:

\[
\text{gap> FactorsMPQS(1044396320275711827781205923);}
\]
\[
[48742642651, 21426747986432473]
\]

An old final

1) Find by hand all solutions to the following congruences:
 a) \(4x + 7 \equiv 5 \pmod{19} \) \quad b) \(12x \equiv 18 \pmod{30} \)
2) Show that for every even \(n \geq 6 \) there exist primes \(p \) and \(q \) such that \((n - p, n - q) = 1\).

3) Determine all nonprime integers \(n \), such that \(\phi(n) = pq \) is the product of two primes.

4) Determine (without using a ChineseRem function) a solution to the following set of congruences: \(x \equiv 3 \pmod{5} \), \(x \equiv 2 \pmod{11} \), \(x \equiv 1 \pmod{23} \).

5) a) Determine (without using an OrderMod function) the orders of 2 and 11 modulo 257. b) Let \(n = 110881 \) (which is prime). You are given the information that \(\text{ord}_n(15) = 990 \) and \(\text{ord}_n(17) = 7392 \). Determine (without using a PrimitiveRoot function) a primitive root modulo \(n \).

6) Show (without explicitly testing all bases) that \(6601 = 7 \cdot 23 \cdot 41 \) is a Carmichael number.

7) Let \(n = 1019 \) (which is prime). a) Show that 2 is a primitive root modulo \(n \). b) Using Shanks's algorithm, determine the index \(\text{ind}_2(470) \). c) Determine all solutions of the equation \(x^6 \equiv 470 \pmod{1019} \).

8) a) Show that 1729 is a pseudoprime for base 2 but not a strong pseudoprime for base 2. b) Show that \(p = 123456791 \) is probably prime, by showing that is is a strong pseudoprime for (at least) 5 bases. Can you deduce that it is prime? c) Prove that 1237 is prime, using the Lucas-Lehmer test (you may assume knowledge of all primes < 100).

9) Using the Quadratic Reciprocity Law, determine whether the following equations have a solution (You may assume that all moduli are prime). you do not need to give the solutions:
 a) \(x^2 \equiv -1 \pmod{1237} \)
 b) \(x^2 \equiv 44100 \pmod{1234577} \)
 c) \(x^2 \equiv 93732 \pmod{1234577} \)

10) We want to factorize \(42448001 \) with the quadratic sieve.
 a) Determine all primes smaller than 18 which can be factors of \(x^2 - n \).
 b) Write down a sieving table for a factor base given by the primes in a), and a sieving interval of length \(2 \cdot 10 \).
 c) Factorize \(42448001 \) with the quadratic sieve. (You do not need to prove that the factors are prime.)

11) Show that for any integer \(n > 1 \) the decomposition of \(n! \) into prime factors contains at least one prime with exponent 1.

12) State (assuming only the knowledge of a student at the start of M400):
 a) The Riemann Hypothesis.
 b) The definition of a nonsingular elliptic curve.