56) Let \(p \) be prime with \(p \equiv 3 \pmod{4} \) and let \(q = 2p + 1 \).

a) Show that if \(q \) is prime, we have that \(q | 2^p - 1 \). (Hint: Evaluate \(2^{\frac{q-1}{2}} \pmod{q} \).)

b) Show (without using a computer) that \(2^{50051} - 1 \) is composite.

57) For \(n \in \{10^3, 10^4, 10^5, 10^6\} \) determine the smallest value \(m \) such that there is a probability \(p > \frac{1}{2} \) that (at least) two out of \(m \) random integers in the range \([0..n-1] \) are equal.

58) Factorize 9374251 using Pollard's \(\rho \)-method (you do not need to group differences for Gcd calculations).
 You may use a computer for modulo arithmetic and for computing geds and \texttt{IsPrime} for primality tests.
 In GAP it might be convenient to use
 \texttt{CTRL-P} to get previous lines back or to write a small \texttt{for}-loop. You can use \texttt{LogTo} to obtain a transcript file.

59) We consider the drawing of random elements (with repetition) from a set of \(p \) elements. Suppose that the first repeated drawing occurs with the \(m \)-th \((m \geq 2) \) draw.

a) Using the inequality \(1 - x \leq e^{-x} \), show that for \(j \geq 2 \), the probability
 \[
 \text{prob}(m \geq j) \leq \prod_{1 \leq i < j} e^{-(i-1)/p} \leq e^{-(j-2)^2/2p}.
 \]
 b) The expected value for the number of choices \(m \) is defined as:
 \[
 \mathcal{E}(m) = \sum_{j \geq 2} j \cdot \text{prob}(m = j) = \sum_{j \geq 2} \text{prob}(m \geq j)
 \]
 (you do not need to show this). Show that:
 \[
 \mathcal{E}(m) \leq 1 + \int_{0}^{\infty} e^{-x^2/2p} \, dx \leq 1 + \sqrt{2p} \int_{0}^{\infty} e^{-x^2} \, dx
 \]
 (Hint: Riemann sum and substitution)
 c) Assuming that the function \(f(x) = x^2 + 1 \) produces random values, show that there is a constant \(c \) such that Pollard’s \(\rho \) method will take in average \(c \sqrt{p} \) steps to find a prime factor \(p \).

60*) Why isn’t it a good idea to use the functions \(f(x) = ax + b \) (for \(a, b \in \mathbb{Z} \)) or \(f(x) = x^2 \) in Pollard’s \(\rho \) method? Explain.

Problems marked with a * are bonus problems for extra credit.