1) Show, that if there are integers \(r \) and \(s \), such that
\[
a = r^2 - s^2, \quad b = 2rs, \quad c = r^2 + s^2
\]
then \((a, b, c)\) is a pythagorean triple, i.e. \(a^2 + b^2 = c^2\).

2) Prove, that the product of two consecutive integers is always divisible by 2, and that the product of three consecutive integers is always divisible by 3.

3) Determine (without using a computer) the number of zeroes at the end of \(50!\). (\(50! = 1 \cdot 2 \cdots \cdots 50\).)

4) Show that when \(n\) is odd, \(n^2 - 1\) is a multiple of 8.

5) For an integer \(n\) define the “sum of divisors” function as
\[
\sigma(n) = \sum_{d|n} d
\]
(For example \(\sigma(8) = 1 + 2 + 4 + 8 = 15, \sigma(6) = 1 + 2 + 3 + 6 = 12\).)
A number \(n\) is called perfect if \(\sigma(n) = 2n\).

 a) Compute \(\sigma(p^n)\) for a prime \(p\).
 b) Suppose that \(n = 2^{p-1}(2^{p}-1)\) with \(p\) and \(2^{p}-1\) prime. Show that \(n\) is perfect (i.e. \(\sigma(n) = 2n\)).

6) Get accustomed with the basic functionality of a computer algebra system – for example GAP as listed below.

1 Computer Use

You are permitted to use computers/calculators for calculations, as long as this does not render a problem irrelevant. (As a rule of thumb, that means that calculations that are “new” should be performed by hand, calculations which we did already a while ago may be done mechanically.) For example if the aim of a problem is to calculate an (extended) \(\gcd\), you may do division with remainder with a calculator. If the problem is to solve a system of congruences you may do extended \(\gcd\) calculations, if the problem is the factorization of a large number you may use the computer to solve congruences and so on.
An introduction to GAP

You start GAP by calling gap or gap4 under Unix or by clicking the gap.bat icon under Windows. The program will start up and you will get a text prompt, looking like this:

```
gap>
```

You now can type in commands (followed by a semicolon) and GAP will return the result. To leave GAP you can either call `quit;` or type `<ctl>-d`

The editing commands are similar as in the EMACS editor (depending on the setup, also cursor keys might work):

- `<ctl>-p` gets the previous line. (If the cursor is not at the start of the line, it gets the last line that starts like the current one.)
- `<ctl>-n` gets the next line.
- `<ctl>-f` goes one character to the right.
- `<ctl>-b` goes one character to the left.
- `<ctl>-a` goes to the start of the line.
- `<ctl>-e` goes to the end of the line.
- `<ctl>-d` deletes the character under the cursor (insert is automatic).
- `<ctl>-k` deletes the rest of the line.

GAP knows integers of arbitrary length and rational numbers:

```
gap> -3; 17 - 23;
-3
-6
gap> 2^200-1;
1606938044258990275541962092341162602522202993782792835301375
gap> 123456/7891011+1;
2671489/2630337
```

GAP knows a precedence between operators that may be overridden by parentheses and can compare objects:

```
gap> (9 - 7) * 5 = 9 - 7 * 5;
false
gap> 5/3<2;
true
gap> 5/3>=2;
false
```
You can assign numbers (or more general: every GAP object to variables, by using the assignment operator :=. Once a variable is assigned to, you can refer to it as if it was a number. The special variables last, last2, and last3 contain the results of the last three commands.

```gap
a := 2^16 - 1;
65535
b := a / (2^4 + 1);
3855
5 * b - 3 * a;
-177330
last + 5;
-177325
last + 2;
-177323
```

The following commands are useful for number theoretic calculations:

```gap
Int(8/3); # round down
2
QuoInt(76,23); # integral part of quotient
3
76 mod 23; # remainder (note the blanks)
7
EvalF(76/23); # numeric approximation
"3.3043478260"
IsPrime(6); # primality test
false
IsPrime(73);
true
NextPrimeInt(73); # next bigger prime
79
17/2 > 9;
false
17/2 <= 9;
true
RootInt(1000,2); # rounded root
31
```

By enclosing objects with square brackets, and separating them by commas, you can create a list. Collections of numbers (or other objects) are represented by such lists. Lists are also used to represent sets.

```gap
l := [5, 3, 99, 17, 2]; # create a list
[ 5, 3, 99, 17, 2 ]
```
Results that consist of several numbers are represented as list.

There are powerful list functions that often can save programming loops: List, Filtered, ForAll, ForAny, First. The notation \(i \rightarrow xyz \) is a shorthand for a one parameter function.
 gap> Filtered(l,IsPrime);
 [5, 3, 17, 2]
 gap> ForAll(l,i -> i>10);
 false
 gap> ForAny(l,i -> i>10);
 true
 gap> First(l,i -> i>10);
 99

You can use the online help to get documentation

 gap> ?List
 Help: Showing ‘Reference: List’
 > List(<list>) ...

(Use ?Line Editing to get a list of edit commands.)

A special case of lists are ranges, indicated by double dots. They can also be used to create arithmetic progressions:

 gap> l:=[10..100];
 [10 .. 100]
 gap> Length(l);
 91
 gap> First(l,IsPrime);
 11
 gap> 12:=[3,7..99];
 [3, 7 .. 99]
 gap> Length(l2);
 25
 gap> Filtered(l2,IsPrime);
 gap> Filtered(l2,i-> not IsPrime(i));
 [15, 27, 35, 39, 51, 55, 63, 75, 87, 91, 95, 99]

For a more complex example, we test whether numbers that can be represented as the sum of two squares.

 gap> max:=1000;
 1000
 gap> lim:=RootInt(max,2)+1; # rounded up root
 32
 gap> cands:=[0..lim]; # candidate numbers to be squared
 [0 .. 32]
 gap> ForAny(cands,x->ForAny(cands,y->x^2+y^2= 19));
 false
 gap> ForAny(cands,x->ForAny(cands,y->x^2+y^2= 20));
 true
Here, we test whether there is any combination of squares that sums up to the number we want to test. (This is far from optimal. Can you think of a better test?) We now can combine this with a Filtered command to test all numbers up to 1000 that have this property. (We look for those \(n \), such that an \(x \) exists, and that an \(y \) exists such that \(x^2 + y^2 = n \).)

\[
gap> \text{Filtered([1..max],}
\> n \rightarrow \text{ForAny(cands,x->ForAny(cands,y->x^2+y^2=n))));}
\[
[1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40,
\]
\]