1) a) Describe the design paradigm *Dynamical Programming*. Which problem does it address? In which situations
can it be used? (7 Points)
b) Design an algorithm for the *knapsack*-problem: Given an integer K and n integers $1 \leq s_i \leq K$, find a subset of
$S = \{s_i\}$ such that the sum over these s_i is exactly K (or determine that no such set exists). (13 Points)

2) Consider the following problem: You are given a sequence of n integers that contains $\log n$ different integers.
a) Design an algorithm to sort this sequence using $O(n \log \log n)$ element comparisons. (15 Points)
b) Why does this runtime not violate the lower bound of $\Omega(n \log n)$ comparisons? (5 Points)

3) a) A divide-and-conquer algorithm for multiplying two $n \times n$ matrices reduces the calculation to 7 products of
$n^2 \times n^2$ matrices and 18 matrix additions of $n \times n$ matrices. (This addition is given by the rule
$(A + B)_{i,j} = A_{i,j} + B_{i,j}$)
Give a recurrence solution for the runtime $T(n)$ required to multiply two $n \times n$ matrices and give a O-estimate for
$T(n)$. (12 Points)
b) Solve the following recurrence relation with full history:
$$T(n) = n + \sum_{i=1}^{n-1} T(i), \quad T(1) = 1.$$ (8 Points)

4) a) Give the definitions of a *bipartite graph*, a *matching* and state the *alternating path theorem*. (7 Points)
Let $G = (V, E)$ be a tree. A *vertex cover* for G is a subset of vertices $U \subset V$, such that every edge is adjacent to at
least one vertex in U. In general there are several possible vertex covers, we are interested in those for which the
size of U is minimal, we call such a cover a *minimal vertex cover*.

For example:

b) Show that there is a minimal vertex cover that does not contain any leaves of the tree. *(Hint: The edge to a leaf
can always be covered by the vertex which is parent to the leaf)* (2 Points)
c) Design an efficient algorithm to find a minimal vertex cover. Use the observation from b) to reduce the problem
to a smaller graph. The algorithm should run in time $O(|V|)$ (show this!). (11 Points)