1. Suppose \([a], [b] \in \mathbb{Z}_6\) so that \([a] \cdot [b] = [0]\). Can you conclude that either \([a] = [0]\) or \([b] = [0]\)? Why or why not?

Answer: No, you can’t conclude that either \([a]\) or \([b]\) is \([0]\). For example, if \([a] = [2]\) and \([b] = [3]\), then \([2] \cdot [3] = [2 \cdot 3] = [6] = [0]\).

2. List all the possible equivalence relations on the set \(A = \{a, b\}\). (For organizational purposes, it may be helpful to write the relations as subsets of \(A \times A\).)

Answer: Thinking of an equivalence relation \(R\) on \(A\) as a subset of \(A \times A\), the fact that \(R\) is reflexive means that
\[\{(a, a), (b, b)\} \subseteq R.\]

Clearly, one possibility is just to let \(R = \{(a, a), (b, b)\}\), which is automatically reflexive, symmetric, and transitive.

Now, if I want to add an element to \(R\), my only possibilities are \((a, b)\) and \((b, a)\). But \(R\) being symmetric means that if I add one I have to add both, so I could also let \(R = \{(a, a), (b, b), (a, b), (b, a)\}\). This is reflexive and symmetric by construction and it is automatically transitive since \(R\) only contains 2 elements.

These are the only two possibilities, so I see that the only equivalence relations on \(A\) are
\[\{(a, a), (b, b)\}\] and
\[\{(a, a), (b, b), (a, b), (b, a)\}\].

3. Define the relation \(R\) on \(\mathbb{Z}\) by \(x R y\) if \(x^2 \equiv y^2 \pmod{4}\). Is \(R\) an equivalence relation? If so, what are the equivalence classes of \(R\)?

Answer: Yes, \(R\) is an equivalence relation. To prove this, I need to show that \(R\) is reflexive, symmetric, and transitive.

Reflexive: Let \(x \in \mathbb{Z}\). Then \(x^2 \equiv x^2 \pmod{4}\), so \(x R x\).

Symmetric: Let \(x, y \in \mathbb{Z}\) so that \(x R y\). This means that \(x^2 \equiv y^2 \pmod{4}\), which obviously means that \(y^2 \equiv x^2 \pmod{4}\) and hence that \(y R x\), so \(R\) is symmetric.

Transitive: Let \(x, y, z \in \mathbb{Z}\) so that \(x R y\) and \(y R z\). Then \(x^2 \equiv y^2 \pmod{4}\) and \(y^2 \equiv z^2 \pmod{4}\), so we have that
\[x^2 \equiv y^2 \equiv z^2 \pmod{4},\]
so \(x R z\) and we conclude that \(R\) is transitive.

Now, to figure out the equivalence classes, let’s think about the four possibilities for an integer: it can be congruent to 0, 1, 2, or 3 modulo 4.

- If \(a \equiv 0 \pmod{4}\), then \(a^2 \equiv 0^2 \equiv 0 \pmod{4}\).
- If \(a \equiv 1 \pmod{4}\), then \(a^2 \equiv 1^2 \equiv 1 \pmod{4}\).
- If \(a \equiv 2 \pmod{4}\), then \(a^2 \equiv 2^2 \equiv 0 \pmod{4}\).
- If \(a \equiv 3 \pmod{4}\), then \(a^2 \equiv 3^2 \equiv 1 \pmod{4}\).

Therefore, all even integers are in the same equivalence class and all odd integers are in a different equivalence class, and these are the only two equivalence classes.

4. Define the relation \(R\) on \(\mathbb{R}\) by \(x R y\) if \(xy > 0\). Is \(R\) an equivalence relation? If so, what are the equivalence classes of \(R\)?

Answer: No. Since \(0 \cdot 0 = 0\) is not greater than 0, we know that \(0 R 0\), so \(R\) is not reflexive.
5. Suppose \(R_1 \) and \(R_2 \) are equivalence relations on a set \(A \). Define the relation \(R \) on \(A \) by \(x R y \) if \(x R_1 y \) and \(x R_2 y \). Give the first two steps of the proof that \(R \) is an equivalence relation by showing that \(R \) is reflexive and symmetric.

Proof. Reflexive: Let \(a \in A \). Then since \(R_1 \) and \(R_2 \) are reflexive, \(a R_1 a \) and \(a R_2 a \), so \(a R a \) and \(R \) is reflexive.

Symmetric: Let \(a, b \in A \) so that \(a R b \). This means that \(a R_1 b \) and \(a R_2 b \). Since \(R_1 \) and \(R_2 \) are symmetric, this implies that \(b R_1 a \) and \(b R_2 a \), so \(b R a \) and \(R \) is symmetric. \(\square \)

6. Let \(A = \{1, 2, 3, 4\} \) and \(B = \{a, b, c\} \). Find a function \(f : A \to B \) which is either injective or surjective, but not both.

Answer: Define \(f : A \to B \) by the following subset of \(A \times B \):

\[
\{ (1, a), (2, a), (3, b), (4, c) \}.
\]

Then \(f \) is surjective since all elements of \(B \) are in the range of \(f \): \(f(1) = a \), \(f(3) = b \), and \(f(4) = c \). However, \(f \) is clearly not injective since \(f(1) = f(2) = a \).

7. Define the function \(g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) by \(g(m, n) = 2n - 4m \).

(a) Is \(g \) injective? Prove or give a counterexample.

Answer: No. Notice that \(g(1, 2) = 2(2) - 4(1) = 0 \) and that \(g(2, 4) = 2(4) - 4(2) = 0 \), so \(g \) is not injective.

(b) Is \(g \) surjective? Prove or give a counterexample.

Answer: No. Notice that, regardless of what \(m \) and \(n \) are, \(g(m, n) = 2n - 4m = 2(n - 2m) \) is even. Therefore, since \(1 \) is odd, there is no \((m, n) \in \mathbb{Z} \times \mathbb{Z} \) so that \(g(m, n) = 1 \), and hence \(g \) is not surjective.

8. Define the function \(h : \mathbb{Z}_8 \to \mathbb{Z}_8 \) by \(h([a]) = [a^3] \).

(a) Is \(h \) injective? Prove or give a counterexample.

Answer: No. Since \(h([2]) = [2^3] = [8] = [0] \) and \(h([0]) = [0^3] = [0] \), we can see that \(h \) is not injective.

(b) Is \(h \) surjective? Prove or give a counterexample. (*Hint: Why does your answer to part (a) provide the answer to this question without doing any additional work?*)

Answer: No. We can use the result proved in class which said that if \(A \) is a finite set and \(f : A \to A \), then \(f \) is injective if and only if \(f \) is surjective. In this case, we saw in (a) that \(h \) isn’t injective; since \(\mathbb{Z}_8 \) is finite, this means that \(h \) cannot be surjective.

9. Suppose \(A, B, \) and \(C \) are sets and that \(f : A \to B \) and \(g : B \to C \) are functions. If \(g \circ f \) is surjective, is \(f \) necessarily surjective? Prove or give a counterexample.

Answer: No. Consider \(A = B = \{1, 2\} \), \(C = \{1\} \) and define \(f : A \to B \) by \(f(1) = f(2) = 1 \) and \(g : B \to C \) by \(g(1) = g(2) = 1 \). Then \((g \circ f)(a) = 1 \) for all \(a \in A \) and \(g \circ f \) is obviously surjective, but \(f \) is not surjective since there is no \(a \in A \) so that \(f(a) = 2 \).

10. Define the sequence \(a_1, a_2, a_3, \ldots \) by

\[
a_1 = 1, \quad a_2 = 2, \quad \text{and} \quad a_n = 2a_{n-1} - a_{n-2} \text{ for all } n \geq 3.
\]

Prove that \(a_n = n \) for all \(n \in \mathbb{N} \).
Proof. The goal is to prove this using strong induction. For \(n \in \mathbb{N} \), let \(P(n) \) be the statement that \(a_n = n \). Then I want to show that \(P(n) \) is true for all \(n \in \mathbb{N} \).

Base Case: Clearly \(P(1) \) and \(P(2) \) are true, since \(a_1 = 1 \) and \(a_2 = 2 \).

Inductive Step: Let \(k \in \mathbb{N} \) and assume \(P(i) \) is true for all \(1 \leq i \leq k \). In other words, we assume that \(a_i = i \) whenever \(1 \leq i \leq k \).

Now, the goal is to use this information to prove \(P(k + 1) \), which says that \(a_{k+1} = k + 1 \). By definition,

\[
a_{k+1} = 2a_k - a_{k-1}.
\]

But now, by the strong inductive hypothesis, \(P(k) \) and \(P(k - 1) \) are true, so \(a_k = k \) and \(a_{k-1} = k - 1 \). Hence,

\[
a_{k+1} = 2a_k - a_{k-1} = 2(k) - (k - 1) = 2k - k + 1 = k + 1,
\]

and I’ve proved that \(a_{k+1} = k + 1 \), so \(P(k + 1) \) is true.

Having proved both the base case and the (strong) inductive step, the strong principle of mathematical induction allows me to conclude that \(P(n) \) is true for all \(n \in \mathbb{N} \), as desired. \(\square \)