Math 215 HW #4 Solutions

1. Problem 2.1.6. Let P be the plane in 3-space with equation $x + 2y + z = 6$. What is the equation of the plane P_0 through the origin parallel to P? Are P and P_0 subspaces of \mathbb{R}^3?

Answer: For any real number r, the plane $x + 2y + z = r$ is parallel to P, since all such planes have a common normal vector $\mathbf{i} + 2\mathbf{j} + \mathbf{k} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. In particular, notice that the plane determined by the equation $x + 2y + z = 0$ is parallel to P and passes through the origin (since $(x, y, z) = (0, 0, 0)$ is a solution of the above equation). Hence, this is the equation which determines the plane P_0.

Now, suppose $\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \in P_0$; i.e. the triples (x_1, y_1, z_1) and (x_2, y_2, z_2) both satisfy the equation (\ast). Then

$$(x_1 + x_2) + 2(y_1 + y_2) + (z_1 + z_2) = (x_1 + 2y_1 + z_1) + (x_2 + 2y_2 + z_2) = 0 + 0 = 0,$$

so we have that

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix} \in P_0.$$

Also, if $c \in \mathbb{R}$, then

$$cx_1 + 2(cy_1) + cz_1 = c(x_1 + 2y_1 + z_1) = c(0) = 0,$$

so

$$c \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cy_1 \\ cz_1 \end{bmatrix} \in P_0.$$

Therefore, P_0 is a subspace of \mathbb{R}^3.

On the other hand, $\begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$ are both in P, but

$$\begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$$

is not in P since $6 + 2(3) + 0 = 12 \neq 6$.

Therefore, we see that P is not a subspace of \mathbb{R}^3.

2. Problem 2.1.12. The functions \(f(x) = x^2 \) and \(g(x) = 5x \) are “vectors” in the vector space \(\mathbb{F} \) of all real functions. The combination \(3f(x) - 4g(x) \) is the function \(h(x) = \) ________. Which rule is broken if multiplying \(f(x) \) by \(c \) gives the function \(f(cx) \)?

Answer: The combination \(3f(x) - 4g(x) \) is the function

\[
h(x) = 3x^2 - 20x.
\]

If we tried to define scalar multiplication as \(cf(x) = f(cx) \) we would run into problems. Note that

\[
f(5x) = (5x)^2 = 25x^2; \]

but

\[
f(2x) + f(3x) = (2x)^2 + (3x)^2 = 4x^2 + 9x^2 = 13x^2.
\]

Hence, this attempted definition of scalar multiplication would not satisfy rule 8 in the definition of a vector space.

3. Problem 2.1.18.

(a) The intersection of two planes through \((0,0,0)\) is probably a ________ but it could be a ________. It can’t be the zero vector \(\mathbb{Z}! \)

Answer: The intersection of two planes through the origin in \(\mathbb{R}^3 \) is probably a line, but it could be a plane (if the two planes coincide).

(b) The intersection of a plane through \((0,0,0)\) with a line through \((0,0,0)\) is probably a ________ but it could be a ________.

Answer: The intersection of a plane through the origin with a line through the origin in \(\mathbb{R}^3 \) is probably just the single point \((0,0,0)\), but it could be a whole line (if the line lies in the plane).

(c) If \(S \) and \(T \) are subspaces of \(\mathbb{R}^5 \), their intersection \(S \cap T \) (vectors in both subspaces) is a subspace of \(\mathbb{R}^5 \). *Check the requirements on \(x + y \) and \(cx \).*

Answer: To see that \(S \cap T \) is a subspace, suppose \(x, y \in S \cap T \) and that \(c \in \mathbb{R} \). Then, since \(x \) and \(y \) are both in \(S \) and since \(S \) is a subspace (meaning that it is closed under addition), we have that

\[
x + y \in S.
\]

 Likewise, since \(x \) and \(y \) are both elements of \(T \) and since \(T \) is a subspace, we have that \(x + y \in T \). Therefore, since \(x + y \) is in both \(S \) and \(T \), we have that

\[
x + y \in S \cap T.
\]

Likewise, since \(x \in S \) and \(S \) is a subspace (meaning that \(S \) is closed under scalar multiplication), we have that \(cx \in S \); similarly, \(cx \in T \). Therefore,

\[
 cx \in S \cap T.
\]

Since our choices of \(x, y, \) and \(c \) were completely arbitrary, we see that \(S \cap T \) is a subspace of \(\mathbb{R}^5 \).
Problem 2.1.22. For which right-hand sides (find a condition on b_1, b_2, b_3) are these systems solvable?

(a) \[
\begin{bmatrix}
1 & 4 & 2 \\
2 & 8 & 4 \\
-1 & -4 & -2
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2 \\ x_3
\end{bmatrix}
= \begin{bmatrix}
b_1 \\ b_2 \\ b_3
\end{bmatrix}.
\]

(b) \[
\begin{bmatrix}
1 & 4 \\
2 & 9 \\
-1 & -4
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
= \begin{bmatrix}
b_1 \\ b_2 \\ b_3
\end{bmatrix}.
\]

(a) **Answer:** Form the augmented matrix
\[
\begin{bmatrix}
1 & 4 & 2 & b_1 \\ 2 & 8 & 4 & b_2 \\ -1 & -4 & -2 & b_3
\end{bmatrix}
.
\]
The goal is to use elimination to get this into reduced echelon form. Subtract twice row 1 from row 2 and add row 1 to row 3 to get:
\[
\begin{bmatrix}
1 & 4 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 + b_1
\end{bmatrix}.
\]
Hence, the given equation is solvable only if
\[
b_2 - 2b_1 = 0 \quad \text{and} \quad b_3 + b_1 = 0.
\]
In other words, the right-hand side of the equation must be a vector of the form
\[
\begin{bmatrix}
b_1 \\ 2b_1 \\ -b_1
\end{bmatrix}
= b_1 \begin{bmatrix}
1 \\ 2 \\ -1
\end{bmatrix}
\]
for any real number b_1. In other words, the column space of the given matrix is the line containing the vector $\begin{bmatrix}
1 \\ 2 \\ -1
\end{bmatrix}$.

(b) **Answer:** Form the augmented matrix
\[
\begin{bmatrix}
1 & 4 & b_1 \\ 2 & 9 & b_2 \\ -1 & -4 & b_3
\end{bmatrix}.
\]
Then the goal is to get this into reduced echelon form. To do so, subtract twice row 1 from row 2 and add row 1 to row 3, yielding:
\[
\begin{bmatrix}
1 & 4 & b_1 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 0 & b_3 + b_1
\end{bmatrix}.
\]
The given equation is solvable only if
\[
b_3 + b_1 = 0,
\]
or, equivalently, if $b_3 = -b_1$. Hence, the possible right-hand sides are vectors of the form

$$
\begin{bmatrix}
 b_1 \\
 b_2 \\
 -b_1
\end{bmatrix}
= b_1 \begin{bmatrix}
 1 \\
 0 \\
 -1
\end{bmatrix}
+ b_2 \begin{bmatrix}
 0 \\
 1 \\
 0
\end{bmatrix}.
$$

In other words, the column space of the given matrix is the plane containing the vectors

$$
\begin{bmatrix}
 1 \\
 0 \\
 -1
\end{bmatrix}
\text{ and }
\begin{bmatrix}
 0 \\
 1 \\
 0
\end{bmatrix}.
$$

5. Problem 2.1.28. True or false (with a counterexample if false)?

(a) The vectors b that are not in the column space $\text{C}(A)$ form a subspace.

Answer: False. Let

$$
A = \begin{bmatrix}
 1 & 0 \\
 0 & 0
\end{bmatrix}.
$$

Then, for any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, it’s clear that

$$
Ax = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}.
$$

Hence, the column space of A consists of all vectors of the form $\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ for some real number x_1. Now, neither of the two vectors

$$
\begin{bmatrix}
 1 \\
 1
\end{bmatrix},
\begin{bmatrix}
 0 \\
 -1
\end{bmatrix}
$$

is in the column space of A, but their sum

$$
\begin{bmatrix}
 1 \\
 1
\end{bmatrix} + \begin{bmatrix}
 0 \\
 -1
\end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

is in $\text{C}(A)$. Therefore, the vectors that are not in $\text{C}(A)$ do are not closed under addition and so do not form a subspace.

(b) If $\text{C}(A)$ contains only the zero vector, then A is the zero matrix.

Answer: True. The column space of A consists of all linear combinations of the columns of A. In particular, each column of A is an element of $\text{C}(A)$. Hence, if $\text{C}(A)$ contains only the zero vector, then each column of A must be the zero vector, meaning that A is the zero matrix.

(c) The column space of $2A$ equals the column space of A.

Answer: True. Suppose b is in the column space of A. That means there exists some x such that $Ax = b$. Then

$$
\left(2A\right)\left(\frac{1}{2}x\right) = Ax = b,
$$
so b is in the column space of $2A$. Hence, the column space of A is contained in the column space of $2A$.

On the other hand, if c is in the column space of $2A$, then there exists x such that $(2A)x = c$. But that means that

$$A(2x) = 2Ax = c,$$

so c is also in the column space of A. Hence, the column space of $2A$ is contained in the column space of A.

Since we’ve shown containments both directions, it must be the case that the column space of A and the column space of $2A$ are the same space.

(d) The column space of $A - I$ equals the column space of A.

Answer: False. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then the column space of A consists of all linear combinations of the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which is to say all of \mathbb{R}^2. On the other hand,

$$A - I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

so the column space of $A - I$ consists only of the zero matrix.

6. Problem 2.2.6. Describe the attainable right-hand sides b (in the column space) for

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix},$$

by finding the constraints on b that turn the third equation into $0 = 0$ (after elimination). What is the rank, and a particular solution?

Answer: Consider the augmented matrix

$$\begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 2 & 3 & b_3 \end{bmatrix}.$$

We can convert this to reduced echelon form by subtracting twice row 1 from row 3 and subtracting 3 times row 2 from row 3:

$$\begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & b_3 - 2b_1 - 3b_2 \end{bmatrix}.$$

In order for this system to be consistent, it must be the case that

$$b_3 - 2b_1 - 3b_2 = 0.$$
or, equivalently,
\[b_3 = 2b_1 + 3b_2. \]

There are no constraints on \(b_1 \) and \(b_2 \), the possible right-hand sides of the equation are vectors of the form
\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 2b_1 + 3b_2
\end{bmatrix}
= b_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + b_2 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}
\]
for any real numbers \(b_1 \) and \(b_2 \). In other words, the column space of \(A \) is the plane containing the vectors \(\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \).

Looking at the reduced echelon form of the matrix, we see that it is of rank 2 and that a particular solution of the given equation is
\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix} = \begin{bmatrix}
 b_1 \\
 b_2
\end{bmatrix}.
\]

7. Problem 2.2.20. *If \(A \) has rank \(r \), then it has an \(r \) by \(r \) submatrix \(S \) that is invertible.* Find that submatrix \(S \) from the pivot rows and pivot columns of each \(A \):

\[
A = \begin{bmatrix}
 1 & 2 & 3 \\
 1 & 2 & 4
\end{bmatrix} \quad A = \begin{bmatrix}
 1 & 2 & 3 \\
 2 & 4 & 6
\end{bmatrix} \quad A = \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 1
\end{bmatrix}.
\]

Answer: For the first matrix, if we subtract row 1 from row 2 we get the reduced matrix
\[
\begin{bmatrix}
 1 & 2 & 3 \\
 0 & 0 & 1
\end{bmatrix},
\]
so we see that the pivot columns are the first and third columns, and the pivot rows are the first and second rows. Hence, the invertible 2 by 2 submatrix of \(A \) consists of the first and third columns of the first and second rows, namely
\[
\begin{bmatrix}
 1 & 3 \\
 1 & 4
\end{bmatrix}.
\]

For the second choice of \(A \), subtracting row 1 from row 2 yields the reduced matrix
\[
\begin{bmatrix}
 1 & 2 & 3 \\
 0 & 0 & 0
\end{bmatrix}.
\]

Hence, the first column is the only pivot column and the first row is the only pivot row. Therefore, the rank of \(A \) is 1 and the invertible 1 by 1 submatrix consists of the first column of the first row, namely
\[
\begin{bmatrix} 1 \end{bmatrix}.
\]

For the third choice of \(A \), we don’t have to do any elimination to see that the pivot columns of \(A \) are the second and third columns and the pivot rows of \(A \) are the first and third rows.
Hence, A has rank 2 and the invertible 2 by 2 submatrix consists of the second and third columns of the first and third rows, namely

$$
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
$$

8. Problem 2.2.30. Execute the six steps following equation (6) to find the column space and nullspace of A and the solution to $Ax = b$:

$$
A = \begin{bmatrix}
1 & 1 & 2 & 2 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{bmatrix}, \quad b = \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix} = \begin{bmatrix}
4 \\
3 \\
5
\end{bmatrix}.
$$

Answer: Form the augmented matrix $[A \ b]$:

$$
\begin{bmatrix}
2 & 4 & 6 & 4 & 4 \\
2 & 5 & 7 & 6 & 3 \\
2 & 3 & 5 & 2 & 5
\end{bmatrix}.
$$

Then subtracting row 1 from rows 2 and 3 and multiplying row 1 by $\frac{1}{2}$ yields

$$
\begin{bmatrix}
1 & 2 & 3 & 2 & 2 \\
0 & 1 & 1 & 2 & -1 \\
0 & -1 & -1 & -2 & 1
\end{bmatrix}.
$$

Next, subtracting twice row 2 from row 1 and adding row 2 to row 3 gives

$$
\begin{bmatrix}
1 & 0 & 1 & -2 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.
$$

This is now in reduced echelon form, so we can answer the question. Notice that the pivot columns are the first and second columns; hence, the column space of A is the span of the first two columns of A, namely $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}$. Geometrically, this is just the plane containing these two vectors.

Returning the reduced echelon form of the augmented matrix, notice that we must have

$$
x_1 = 4 - x_3 + 2x_4 \\
x_2 = -1 - x_3 - 2x_4,
$$

so the special solutions are of the form

$$
x_3 \begin{bmatrix}
-1 \\
-1 \\
0
\end{bmatrix} + x_4 \begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix}.
$$
for some real numbers x_3 and x_4. Hence, the nullspace of A consists precisely of such linear combinations.

Finally, all solutions to the equation $Ax = b$ are of the form

$$\begin{bmatrix} 4 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -2 \\ 0 \\ 1 \end{bmatrix},$$

where the first term is a particular solution and the latter two terms comprise the special (or homogeneous) solutions.

9. Problem 2.2.62. Construct a matrix whose column space contains $(1, 1, 5)$ and $(0, 3, 1)$ and whose nullspace contains $(1, 1, 2)$.

Answer: The simplest way of constructing a matrix whose column space contains a given vector is to make that vector a column of the matrix. Hence, let

$$A = \begin{bmatrix} 1 & 0 & a_1 \\ 1 & 3 & a_2 \\ 5 & 1 & a_3 \end{bmatrix}.$$

Then the column space of A automatically contains the two desired vectors, and we just need to find a_1, a_2, a_3 such that $(1, 1, 2)$ is in the nullspace. But this just means that we need to choose a_1, a_2, a_3 such that

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a_1 \\ 1 & 3 & a_2 \\ 5 & 1 & a_3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 + a_1 \\ 4 + 2a_2 \\ 6 + 2a_3 \end{bmatrix}.$$

Hence, we can pick $a_1 = -1/2$, $a_2 = -2$, and $a_3 = -3$, so the matrix

$$A = \begin{bmatrix} 1 & 0 & -1/2 \\ 1 & 3 & -2 \\ 5 & 1 & -3 \end{bmatrix}$$

has all of the desired properties.

10. Suppose x_p is a vector in \mathbb{R}^n such that

$$Ax_p = b,$$

where A is a given $m \times n$ matrix and b is a given vector in \mathbb{R}^m. Prove that, if x is any solution to the equation $Ax = b$, then

$$x = x_p + x_h,$$

where x_h is some element of the nullspace of A.

8
Proof. Suppose $x \in \mathbb{R}^n$ such that $Ax = b$. The goal is to find x_h such that $x = x_p + x_h$.

In search of that x_h, notice that

$$A(x - x_p) = Ax - Ax_p = b - b = 0.$$

Hence, $x - x_p$ is in the nullspace of A. Letting $x_h = x - x_p$, we see that

$$x_p + x_h = x_p + (x - x_p) = x,$$

as desired. \qed