Math 215 HW #11 Solutions

1. Problem 5.5.6. Find the lengths and the inner product of

\[\vec{x} = \begin{bmatrix} 2 - 4i \\ 4i \end{bmatrix} \quad \text{and} \quad \vec{y} = \begin{bmatrix} 2 + 4i \\ 4i \end{bmatrix}. \]

Answer: First,

\[\|\vec{x}\|^2 = \vec{x}^H \vec{x} = [2 + 4i \quad - 4i] \begin{bmatrix} 2 - 4i \\ 4i \end{bmatrix} = (4 + 16) + 16 = 36, \]

so \(\|\vec{x}\| = 6\). Likewise,

\[\|\vec{y}\|^2 = \vec{y}^H \vec{y} = [2 - 4i \quad - 4i] \begin{bmatrix} 2 + 4i \\ 4i \end{bmatrix} = (4 + 16) + 16, \]

so \(\|\vec{y}\| = 6\).

Finally,

\[\langle \vec{x}, \vec{y} \rangle = \vec{x}^H \vec{y} = [2 + 4i \quad - 4i] \begin{bmatrix} 2 + 4i \\ 4i \end{bmatrix} = (2 + 4i)^2 - (4i)^2 = (4 - 16 + 16i) + 16 = 4 + 16i. \]

2. Problem 5.5.16. Write one significant fact about the eigenvalues of each of the following:

(a) A real symmetric matrix.

Answer: As we saw in class, the eigenvalues of a real symmetric matrix are all real numbers.

(b) A stable matrix: all solutions to \(du/dt = Au\) approach zero.

Answer: By the definition of stability, this means that the reals parts of the eigenvalues of \(A\) are non-positive.

(c) An orthogonal matrix.

Answer: If \(A\vec{x} = \lambda \vec{x}\), then

\[\langle A\vec{x}, A\vec{x} \rangle = \langle \lambda \vec{x}, \lambda \vec{x} \rangle = \lambda^2 \langle \vec{x}, \vec{x} \rangle = \lambda^2 \|\vec{x}\|^2. \]

On the other hand,

\[\langle A\vec{x}, A\vec{x} \rangle = (A\vec{x})^T A\vec{x} = \vec{x}^T A^T A\vec{x} = \vec{x}^T \vec{x} = \langle \vec{x}, \vec{x} \rangle = \|\vec{x}\|^2. \]

Therefore,

\[\lambda^2 \|\vec{x}\|^2 - \|\vec{x}\|^2, \]

meaning that \(\lambda^2 = 1\), so \(|\lambda| = 1\).

(d) A Markov matrix.

Answer: We saw in class that \(\lambda_1 = 1\) is an eigenvalue of every Markov matrix, and that all eigenvalues \(\lambda_i\) of a Markov matrix satisfy \(|\lambda_i| \leq 1\).
(e) A defective matrix (nondiagonalizable).

Answer: If \(A \) is \(n \times n \) and is not diagonalizable, then \(A \) must have fewer than \(n \) eigenvalues (if \(A \) had \(n \) distinct eigenvalues and since eigenvectors corresponding to different eigenvalues are linear independent, then \(A \) would have \(n \) linearly independent eigenvectors, which would imply that \(A \) is diagonalizable).

(f) A singular matrix.

Answer: If \(A \) is singular, then \(A \) has a non-trivial nullspace, which means that 0 must be an eigenvalue of \(A \).

3. Problem 5.5.22. Every matrix \(Z \) can be split into a Hermitian and a skew-Hermitian part, \(Z = A + K \), just as a complex number \(z \) is split into \(a + ib \). The real part of \(z \) is half of \(z + \overline{z} \), and the “real part” (i.e. Hermitian part) of \(Z \) is half of \(Z + Z^H \). Find a similar formula for the “imaginary part” (i.e. skew-Hermitian part) \(K \), and split these matrices into \(A + K \):

\[
Z = \begin{bmatrix}
3 + 4i & 4 + 2i \\
0 & 5
\end{bmatrix}
\quad \text{and} \quad
Z = \begin{bmatrix}
i & i \\
-i & i
\end{bmatrix}.
\]

Answer: Notice that

\[
(Z + Z^H)^H = Z^H + (Z^H)^H = Z^H + Z,
\]

so indeed \(\frac{1}{2}(Z + Z^H) \) is Hermitian. Likewise,

\[
(Z - Z^H)^H = Z^H - (Z^H)^H = Z^H - Z = -(Z - Z^H),
\]

is skew-Hermitian, so \(K = \frac{1}{2}(Z - Z^H) \) is the skew-Hermitian part of \(Z \).

Hence, when

\[
Z = \begin{bmatrix}
3 + 4i & 4 + 2i \\
0 & 5
\end{bmatrix},
\]

we have

\[
A = \frac{1}{2}(Z + Z^H) = \frac{1}{2} \left(\begin{bmatrix}
3 + 4i & 4 + 2i \\
0 & 5
\end{bmatrix} + \begin{bmatrix}
3 - 4i & 0 \\
4 - 2i & 5
\end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix}
6 & 4 + 2i \\
4 - 2i & 10
\end{bmatrix} = \begin{bmatrix}
3 & 4 + 2i \\
4 - 2i & 5
\end{bmatrix}
\]

and

\[
K = \frac{1}{2}(Z - Z^H) = \frac{1}{2} \left(\begin{bmatrix}
3 + 4i & 4 + 2i \\
0 & 5
\end{bmatrix} - \begin{bmatrix}
3 - 4i & 0 \\
4 - 2i & 5
\end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix}
8i & 4 + 2i \\
-4 + 2i & 0
\end{bmatrix} = \begin{bmatrix}
4i & 4 + 2i \\
-4 + 2i & 0
\end{bmatrix}.
\]

On the other hand, when

\[
Z = \begin{bmatrix}
i & i \\
-i & i
\end{bmatrix}.
\]

we have

\[
A = \frac{1}{2}(Z + Z^H) = \frac{1}{2} \left(\begin{bmatrix}
i & i \\
-i & i
\end{bmatrix} + \begin{bmatrix}
-i & i \\
-i & -i
\end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix}
0 & 2i \\
-2i & 0
\end{bmatrix} = \begin{bmatrix}
0 & i \\
-i & 0
\end{bmatrix}
\]

and

\[
K = \frac{1}{2}(Z - Z^H) = \frac{1}{2} \left(\begin{bmatrix}
i & i \\
-i & i
\end{bmatrix} - \begin{bmatrix}
-i & i \\
-i & -i
\end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix}
2i & 0 \\
0 & 2i
\end{bmatrix} = \begin{bmatrix}
i & 0 \\
0 & i
\end{bmatrix}.
\]
4. Problem 5.5.28. If \(\vec{A}z = \vec{0} \), then \(\vec{A}H\vec{A}z = \vec{0} \). If \(\vec{A}H\vec{A}z = \vec{0} \), multiply by \(\vec{z}H \) to prove that \(\vec{A}z = \vec{0} \). The nullspaces of \(A \) and \(AH \) are \(\underline{_____} \). \(A^H A \) is an invertible Hermitian matrix when the nullspace of \(A \) contains only \(\vec{z} = \underline{\vec{0}} \).

Answer: Suppose \(A^H A\vec{z} = \vec{0} \). Then, multiplying both sides by \(\vec{z}H \) yields
\[
0 = \vec{z}H A^H A\vec{z} = (A\vec{z})H(A\vec{z}) = \langle A\vec{z}, A\vec{z} \rangle = \| A\vec{z} \|_2^2,
\]
meaning that \(A\vec{z} = \vec{0} \).

Therefore, we see that if \(A\vec{z} = \vec{0} \), then \(A^H A\vec{z} = \vec{0} \) and if \(A^H A\vec{z} = \vec{0} \), then \(A\vec{z} = \vec{0} \), so the nullspaces of \(A \) and \(A^H \) are equal.

5. Problem 5.5.48. Prove that the inverse of a Hermitian matrix is again a Hermitian matrix.

Proof. If \(A \) is Hermitian, then
\[
A = U\Lambda U^H,
\]
where \(U \) is unitary and \(\Lambda \) is a real diagonal matrix. Therefore,
\[
A^{-1} = (U\Lambda U^H)^{-1} = (U^H)^{-1}\Lambda^{-1}U^{-1} = U\Lambda^{-1}U^H
\]
since \(U^{-1} = U^H \). Note that \(\Lambda^{-1} \) is just the diagonal matrix with entries \(1/\lambda_i \) (where the \(\lambda_i \) are the entries in \(\Lambda \)). Hence,
\[
(A^{-1})^H = (U\Lambda^{-1}U^H)^H = U(\Lambda^{-1})^H U^H = U\Lambda^{-1}U^H = A^{-1}
\]
since \(\Lambda^{-1} \) is a real matrix, so we see that \(A^{-1} \) is Hermitian. \(\Box \)

6. Problem 5.6.8. What matrix \(M \) changes the basis \(\vec{V}_1 = (1, 1), \vec{V}_2 = (1, 4) \) to the basis \(\vec{v}_1 = (2, 5), \vec{v}_2 = (1, 4) \)? The columns of \(M \) come from expressing \(\vec{V}_1 \) and \(\vec{V}_2 \) as combinations \(\sum m_{ij}\vec{v}_i \) of the \(\vec{v} \)'s.

Answer: Since
\[
\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \vec{v}_1 - \vec{v}_2
\]
and
\[
\vec{V}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \vec{v}_2,
\]
we see that
\[
M = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.
\]

7. Problem 5.6.12. The identity transformation takes every vector to itself: \(T\vec{x} = \vec{x} \). Find the corresponding matrix, if the first basis is \(\vec{v}_1 = (1, 2), \vec{v}_2 = (3, 4) \) and the second basis is \(\vec{w}_1 = (1, 0), \vec{w}_2 = (0, 1) \). (It is not the identity matrix!)

Answer: Despite the slightly confusing way this question is worded, it is just asking for the matrix \(M \) which converts the \(\vec{v} \) basis into the \(\vec{w} \) basis. Clearly,
\[
\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \vec{w}_1 + 2\vec{w}_2
\]
and
\[\vec{v}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3 \vec{w}_1 + 4 \vec{w}_2, \]
so the desired matrix is
\[M = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}. \]

8. Problem 5.6.38. These Jordan matrices have eigenvalues 0, 0, 0, 0. They have two eigenvectors (find them). But the block sizes don’t match and \(J \) is not similar to \(K \).

\[J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad K = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]

For any matrix \(M \), compare \(JM \) and \(MK \). If they are equal, show that \(M \) is not invertible. Then \(M^{-1}JM = K \) is impossible.

Answer: First, we find the eigenvectors of \(J \) and \(K \). Since all eigenvalues of both are 0, we’re just looking for vectors in the nullspace of \(J \) and \(K \). First, for \(J \), we note that \(J \vec{v} = \vec{0} \) implies that \(\vec{v} \) is a linear combination of
\[\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \]

Hence, these are the eigenvectors of \(J \).

Likewise, \(K \) is already in reduced echelon form and \(K \vec{v} = \vec{0} \) implies that \(\vec{v} \) is a linear combination of
\[\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \]

Hence, these are the eigenvectors of \(K \).

Now, suppose
\[M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \]
such that \(JM = MK \). Then
\[JM = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} = \begin{bmatrix} m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & 0 & 0 & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]
and
\[
MK = \begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{bmatrix} \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & m_{11} & m_{12} & 0 \\
0 & m_{21} & m_{22} & 0 \\
0 & m_{31} & m_{32} & 0 \\
0 & m_{41} & m_{42} & 0
\end{bmatrix}.
\]

Therefore \(JM = MK\) means that
\[
\begin{bmatrix}
m_{21} & m_{22} & m_{23} & m_{24} \\
0 & 0 & 0 & 0 \\
m_{41} & m_{42} & m_{43} & m_{44} \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & m_{11} & m_{12} & 0 \\
0 & m_{21} & m_{22} & 0 \\
0 & m_{31} & m_{32} & 0 \\
0 & m_{41} & m_{42} & 0
\end{bmatrix}
\]
and so we have that
\[m_{21} = m_{24} = m_{41} = m_{44}\]

Plugging these back into \(M\), we see that
\[
M = \begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
0 & 0 & m_{23} & 0 \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & m_{43} & 0
\end{bmatrix}.
\]

Clearly, the second and fourth rows are multiples of each other, so \(M\) cannot possibly have rank 4. However, \(M\) not having rank 4 means that \(M\) cannot be invertible. Therefore, \(M^{-1}JM = K\) is impossible, so it cannot be the case that \(J\) and \(K\) are similar.

9. Problem 5.6.40. Which pairs are similar? Choose \(a, b, c, d\) to prove that the other pairs aren’t:
\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
b & a \\
d & c
\end{bmatrix} \begin{bmatrix}
c & d \\
a & b
\end{bmatrix} \begin{bmatrix}
d & c \\
b & a
\end{bmatrix}.
\]

Answer: The second and third are clearly similar, since
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}^{-1} = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
b & a \\
d & c
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} = \begin{bmatrix}
c & d \\
a & b
\end{bmatrix}.
\]
Likewise, the first and fourth are similar, since
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
d & c \\
b & a
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
c & d \\
a & b
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}.
\]
There are no other similarities, as we can see by choosing
\[a = 1, \quad b = c = d = 0.\]
Then the matrices are, in order
\[
\begin{bmatrix}
1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]
Each of these is already a diagonal matrix, and clearly the first and fourth have 1 as an eigenvalue, whereas the second and third have only 0 as an eigenvalue. Since similar matrices have the same eigenvalues, we see that neither the first nor the fourth can be similar to either the second or the third.

10. **(Bonus Problem)** Problem 5.6.14. Show that every number is an eigenvalue for \(T f(x) = df/dx \), but the transformation \(T f(x) = \int_0^x f(t)dt \) has no eigenvalues (here \(-\infty < x < \infty\)).

Proof. For the first \(T \), note that, if \(f(x) = e^{ax} \) for any real number \(a \), then
\[T f(x) = \frac{df}{dx} = ae^{ax} = af(x). \]
Hence, any real number \(a \) is an eigenvalue of \(T \).

Turning to the second \(T \), suppose we had that \(T f(x) = af(x) \) for some number \(a \) and some function \(f \). Then, by the definition of \(T \),
\[\int_0^x f(t)dt = af(x). \]
Now, use the fundamental theorem of calculus to differentiate both sides:
\[f(x) = af'(x). \]
Solving for \(f \), we see that
\[\int f'(x)dx \frac{f(x)}{f(x)} = \int \frac{1}{a}dx, \]
so
\[\ln |f(x)| = \frac{x}{a} + C. \]
Therefore, exponentiating both sides,
\[|f(x)| = e^{x/a+C} = e^C e^{x/a}. \]
We can get rid of the absolute value signs by substituting \(A \) for \(e^C \) (allowing \(A \) to possibly be negative):
\[f(x) = Ae^{x/a}. \]
Therefore, we know that
\[T f(x) = \int_0^x f(t)dt = \int_0^x Ae^{t/a}dt = aAe^{x/a} = aAf(x) = a(f(x) - A). \]
On the other hand, our initial assumption was that \(T f(x) = af(x) \), so it must be the case that
\[af(x) = a(f(x) - A) = af(x) - aA. \]
Hence, either \(a = 0 \) or \(A = 0 \). However, either implies that \(f(x) = 0 \), so \(T \) has no eigenvalues. \(\square \)