1. For each of the following statements, say whether it is true or false. If the statement is true, prove it. If false, give a counterexample.
 (a) If \(Q \) is an orthogonal matrix, then \(\det Q = 1 \).
 (b) Every invertible matrix can be diagonalized.
 (c) Every diagonalizable matrix is invertible.
 (d) If the matrix \(A \) is not invertible, then 0 is an eigenvalue of \(A \).
 (e) If \(\vec{v} \) and \(\vec{w} \) are orthogonal and \(P \) is a projection matrix, then \(P\vec{v} \) and \(P\vec{w} \) are also orthogonal.
 (f) Suppose \(A \) is an \(n \times n \) matrix and that there exists some \(k \) such that \(A^k = 0 \) (such matrices are called nilpotent matrices). Then \(A \) is not invertible.

2. Let \(Q \) be an \(n \times n \) orthogonal matrix. Show that if \(\{\vec{v}_1, \ldots, \vec{v}_n\} \) is an orthonormal basis for \(\mathbb{R}^n \), then so is \(\{Q\vec{v}_1, \ldots, Q\vec{v}_n\} \).

3. Let \(A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \).
 (a) Let \(R \) be the region in the plane enclosed by the unit circle. If \(T \) is the linear transformation of the plane whose matrix is \(A \), what is the area of \(T(R) \)?
 (b) Find the matrix for the transformation \(T^{-1} \) without doing elimination.

4. Let \(\ell \) be the line in \(\mathbb{R}^3 \) through the vector \(\vec{a} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \).
 (a) Find a basis for the orthogonal complement of \(\ell \).
 (b) If \(\vec{v} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \), write \(\vec{v} \) as a sum
 \[\vec{v} = \vec{v}_1 + \vec{v}_2, \]
 where \(\vec{v}_1 \in \ell \) and \(\vec{v}_2 \in \ell^\perp \).

5. Find the line \(C + Dt \) that best fits the data \((-1,1), (0,1), (1,2)\).

6. Let \(\ell \) be the line through a vector \(\vec{a} \in \mathbb{R}^n \) and let \(P \) be the matrix which projects everything in \(\mathbb{R}^n \) to \(\ell \).
 (a) Show that the trace of \(P \) equals 1.
 (b) What can you say about the eigenvalues of \(P \)?

7. Suppose \(A \) is a \(2 \times 2 \) matrix with eigenvalues \(\lambda_1 \) and \(\lambda_2 \) corresponding to non-zero eigenvectors \(\vec{v}_1 \) and \(\vec{v}_2 \), respectively. If \(\lambda_1 \neq \lambda_2 \), show that \(\vec{v}_1 \) and \(\vec{v}_2 \) are linearly independent.