Math 115 HW #10 Solutions

1. Suppose $y_1(t)$ and $y_2(t)$ are both solutions of the differential equation

\[P(t)y'' + Q(t)y' + R(t)y = 0. \]

Show that, for any constants C_1 and C_2, the function

\[C_1y_1(t) + C_2y_2(t) \]

is also a solution of this differential equation.

Proof. Let $y = C_1y_1 + C_2y_2$. Then

\[y' = C_1y_1' + C_2y_2' \]

and

\[y'' = C_1y_1'' + C_2y_2''. \]

Therefore,

\[P(t)y'' + Q(t)y' + R(t)y = P(t)(C_1y_1'' + C_2y_2'') + Q(t)(C_1y_1' + C_2y_2') + R(t)(C_1y_1 + C_2y_2) \]

\[= (P(t)C_1y_1'' + Q(t)C_1y_1' + R(t)C_1y_1) + (P(t)C_2y_2'' + Q(t)C_2y_2' + R(t)C_2y_2) \]

\[= C_1(P(t)y_1'' + Q(t)y_1' + R(t)y_1) + C_2(P(t)y_2'' + Q(t)y_2' + R(t)y_2). \]

However, both terms in the bottom line are zero, for the following reason: since y_1 is a solution of the given differential equation,

\[P(t)y_1'' + Q(t)y_1' + R(t)y_1 = 0; \]

likewise, since y_2 is a solution,

\[P(t)y_2'' + Q(t)y_2' + R(t)y_2 = 0. \]

Therefore, we see that $y = C_1y_1 + C_2y_2$ is indeed a solution of the given differential equation for any constants C_1 and C_2.

2. Solve the differential equation

\[6y'' - 7y' - 12y = 0. \]

Answer: The characteristic equation is

\[6r^2 - 7r - 12 = 0; \]

solutions of this equation are:

\[r = \frac{7 \pm \sqrt{(-7)^2 - 4(6)(-12)}}{2(6)} = \frac{7 \pm \sqrt{49 + 288}}{12} = \frac{7 \pm \sqrt{337}}{12}. \]

Therefore, solutions of the given differential equation are of the form

\[y = C_1e^{\frac{7+\sqrt{337}}{12}t} + C_2e^{\frac{7-\sqrt{337}}{12}t}. \]
3. Solve the initial-value problem

$$2y'' + 6y' + 17y = 0, \quad y(0) = 1, y'(0) = 5.$$

Answer: The characteristic equation is

$$2r^2 + 6r + 17 = 0;$$

solutions are

$$r = \frac{-6 \pm \sqrt{6^2 - 4(2)(17)}}{2(2)} = \frac{-6 \pm \sqrt{36 - 136}}{4} = -\frac{3}{2} \pm \frac{5}{2}i.$$

Therefore, solutions of the given differential equation are of the form

$$y = C_1 e^{-\frac{3}{2}t} \cos \left(\frac{5}{2}t\right) + C_2 e^{-\frac{3}{2}t} \sin \left(\frac{5}{2}t\right).$$

Plugging in \(t = 0\), we have that

$$1 = y(0) = C_1 e^0 \cos(0) + C_2 e^0 \sin(0) = C_1,$$

so \(C_1 = 1\) and

$$y = e^{-\frac{3}{2}t} \cos \left(\frac{5}{2}t\right) + C_2 e^{-\frac{3}{2}t} \sin \left(\frac{5}{2}t\right).$$

Hence,

$$y' = -\frac{3}{2} e^{-\frac{3}{2}t} \cos \left(\frac{5}{2}t\right) - \frac{5}{2} e^{-\frac{3}{2}t} \sin \left(\frac{5}{2}t\right) - \frac{3}{2} C_2 e^{-\frac{3}{2}t} \sin \left(\frac{5}{2}t\right) + \frac{5}{2} C_2 e^{-\frac{3}{2}t} \cos \left(\frac{5}{2}t\right).$$

Therefore, plugging in \(t = 0\) yields

$$5 = y'(0) = \left(\frac{5}{2} C_2 - \frac{3}{2}\right) e^0 \cos(0) - \left(\frac{5}{2} + \frac{3}{2} C_2\right) e^0 \sin(0) = \frac{5}{2} C_2 - \frac{3}{2}.$$

Therefore,

$$\frac{5}{2} C_2 = 5 + \frac{3}{2} = \frac{13}{2},$$

so

$$C_2 = \frac{2 \cdot 13}{5 \cdot 2} = \frac{13}{5}.$$

Thus, we conclude that

$$y = e^{-\frac{3}{2}t} \cos \left(\frac{5}{2}t\right) + \frac{13}{5} e^{-\frac{3}{2}t} \sin \left(\frac{5}{2}t\right).$$
4. A spring-mass-dashpot system (like the door-closing mechanism in many doors) can be modeled by the differential equation

\[m x'' + cx' + kx = 0 \]

where \(x \) is the displacement of the object, \(m \) is the mass of the object, \(c \) is the damping constant for the dashpot, and \(k \) is the spring constant. Suppose we have such a system with a mass \(m = 20 \) kg, a spring with \(k = 5 \), and a dashpot whose damping constant \(c \) we can adjust. What value of \(c \) should we pick to get critical damping?

Answer: Critical damping occurs when there is a single root (of multiplicity 2) of the characteristic equation. Plugging in the values for \(m \) and \(k \) we have the differential equation

\[20 x'' + cx' + 5x = 0, \]

so the characteristic equation is

\[20r^2 + cr + 5 = 0. \]

Solutions are of the form

\[r = \frac{-c \pm \sqrt{c^2 - 4(20)(5)}}{2(20)} = \frac{-c \pm \sqrt{c^2 - 400}}{40}. \]

There is a single root of multiplicity 2 when the discriminant \(c^2 - 400 = 0 \), meaning that

\[c = \pm 20. \]

The value \(c = -20 \) is physically meaningless, so we should pick \(c = 20 \) to get critical damping.

5. Solve the differential equation

\[y'' - y' - 6y = e^{2x}. \]

Answer: First, we solve the homogeneous equation

\[y'' - y' - 6y = 0. \]

This has characteristic equation

\[r^2 - r - 6 = 0; \]

The left side factors as \((r - 3)(r + 2)\), so the roots are \(r_1 = 3 \) and \(r_2 = -2 \). Hence, the complementary solution (i.e. solution to the homogeneous equation) is

\[y_c = C_1 e^{3x} + C_2 e^{-2x}. \]

Now, we need to find a particular solutions to the given equation

\[y'' - y' - 6y = e^{2x}. \]

Using the method of undetermined coefficients, guess that

\[y_p = Ae^{2x}. \]
Then
\[y'_p = 2Ae^{2x}, \]
and
\[y''_p = 4Ae^{2x}. \]
Therefore, if \(y_p \) really is a solution, we should have that
\[e^{2x} = y''_p - y'_p - 6y_p = 4Ae^{2x} - 2Ae^{2x} - 6(Ae^{2x}) = -4Ae^{2x}. \]
Therefore, it must be the case that
\[1 = -4A, \]
so \(A = -\frac{1}{4} \) and
\[y_p = -\frac{1}{4}e^{2x}. \]
Thus, the general solution of the given non-homogeneous equation is
\[y = y_c + y_p = C_1e^{3x} + C_2e^{-2x} - \frac{1}{4}e^{2x}. \]

6. Solve the differential equation
\[y'' - 4y' + 4y = e^{2x}. \]

Answer: First, solve the homogeneous equation
\[y'' - 4y' + 4y = 0. \]
This has characteristic equation
\[r^2 - 4r + 4 = 0 \]
and the left side factors as \((r-2)^2\), so the single solution (of multiplicity 2) is \(r = 2 \). Therefore, the complementary solution is
\[y_c = C_1e^{2x} + C_2xe^{2x}. \]
Now, to find a particular solution to the given equation, we would like to guess that \(y_p \) is \(e^{2x} \). However, this is already a solution to the homogeneous equation, so it can’t be a particular solution. Multiplying by \(x \) yields \(xe^{2x} \), which is also a solution to the homogeneous equation. Therefore, we need to multiply by \(x \) again and guess
\[y_p = Ax^2e^{2x}. \]
Then
\[y'_p = 2Axe^{2x} + 2Ax^2e^{2x} \]
and
\[y''_p = 2Ae^{2x} + 4Axe^{2x} + 4Axe^{2x} + 4Ax^2e^{2x} = 2Ae^{2x} + 8Axe^{2x} + 4Ax^2e^{2x}. \]
Therefore, since y_p is a solution of the equation,

\[
e^{2x} = y_p'' - 4y'_p + 4y_p
\]

\[
= (2Ae^{2x} + 8Axe^{2x} + 4Ax^2e^{2x}) - 4(2Axe^{2x} + 2Ax^2e^{2x}) + 4Ax^2e^{2x}
\]

\[
= (4A - 8A + 4A)x^2e^{2x} + (8A - 8A)xe^{2x} + 2Ae^{2x}
\]

\[
= 2Ae^{2x}.
\]

Therefore, $2A = 1$ and so $A = 1/2$. Hence,

\[
y_p = \frac{1}{2}x^2e^{2x}
\]

and so the solution of the differential equation is

\[
y = y_c + y_p = C_1e^{2x} + C_2xe^{2x} + \frac{1}{2}x^2e^{2x}.
\]

7. Solve the initial-value problem

\[
y'' + 9y = \cos 3x + \sin 3x, \quad y(0) = 2, \quad y'(0) = 1.
\]

Answer: First, solve the homogeneous equation

\[
y'' + 9y = 0.
\]

This equation has characteristic equation

\[
r^2 + 9 = 0,
\]

which has solutions $r = \pm 3i$. Therefore, the complementary solution is

\[
y_c = C_1e^{0x}\cos 3x + C_2e^{0x}\sin 3x
\]

\[
= C_1\cos 3x + C_2\sin 3x.
\]

Now, we would like to guess that the particular solution is $A\cos 3x + B\sin 3x$, but both $\cos 3x$ and $\sin 3x$ are solutions to the homogeneous equation. Hence, we multiply by x and guess that

\[
y_p = Ax\cos 3x + Bx\sin 3x.
\]

Then

\[
y_p' = A\cos 3x - 3Ax\sin 3x + B\sin 3x + 3Bx\cos 3x
\]

\[
= (A + 3Bx)\cos 3x + (B - 3Ax)\sin 3x
\]

and so

\[
y_p'' = -3A\sin 3x + 3B\cos 3x - 9Bx\sin 3x + 3B\cos 3x - 3A\sin 3x - 9Ax\cos 3x
\]

\[
= (6B - 9Ax)\cos 3x - (6A + 9Bx)\sin 3x.
\]
Therefore, since y_p solves the differential equation,

$$
cos 3x + sin 3x = y''_p + 9y_p
$$

$$
= [(6B - 9Ax) \cos 3x - (6A + 9Bx) \sin 3x] + 9[Ax \cos 3x + Bx \sin 3x]
$$

$$
= 6B \cos 3x - 6A \sin 3x
$$

Therefore

$$
1 = 6B, \quad 1 = -6A,
$$

so $B = 1/6$ and $A = -1/6$, meaning that

$$
y_p = -\frac{1}{6}x \cos 3x + \frac{1}{6}x \sin 3x.
$$

Hence,

$$
y = y_c + y_p = C_1 \cos 3x + C_2 \sin 3x - \frac{1}{6}x \cos 3x + \frac{1}{6}x \sin 3x.
$$

Now, plugging in $x = 0$ yields

$$
2 = y(0) = C_1 \cos(0) + C_2 \sin(0) - \frac{1}{6}(0) \cos(0) + \frac{1}{6}(0) \sin(0) = C_1,
$$

so $C_1 = 2$ and

$$
y = 2 \cos 3x + C_2 \sin 3x - \frac{1}{6}x \cos 3x + \frac{1}{6}x \sin 3x.
$$

Our other initial value is $y'(0) = 1$, so we need to find the derivative of y:

$$
y' = -6 \sin 3x + 3C_2 \cos 3x - \frac{1}{6} \cos 3x + \frac{1}{2}x \sin 3x + \frac{1}{6} \sin 3x + \frac{1}{2}x \cos 3x
$$

$$
= \left(3C_2 - \frac{1}{6} + \frac{1}{2}x\right) \cos 3x + \left(-6 + \frac{1}{6} + \frac{1}{2}x\right) \sin 3x.
$$

Plugging in $x = 0$ yields

$$
1 = y'(0) = \left(3C_2 - \frac{1}{6} + \frac{1}{2}(0)\right) \cos(0) + \left(-6 + \frac{1}{6} + \frac{1}{2}(0)\right) \sin(0)
$$

$$
= 3C_2 - \frac{1}{6}.
$$

Hence,

$$
3C_2 = \frac{7}{6}
$$

so $C_2 = \frac{7}{18}$.

Therefore, finally, we see that

$$
y = 2 \cos 3x + \frac{7}{18} \sin 3x - \frac{x}{6} \cos 3x + \frac{x}{6} \sin 3x.
$$