4.

Give $\text{Diff}(S^1)$ any reasonable topology, such as the compact-open topology, the C^r topology or the C^∞ topology. The orthogonal group $O(2)$ of rigid motions of a circle has two components, the rotations $SO(2)$ and the flips. Find an explicit strong deformation retraction of $\text{Diff}(S^1)$ to $O(2)$.

Answer: We may as well consider elements of $\text{Diff}(S^1)$ as functions of ϕ, the angle of elevation above the x-axis. Now, if $f \in \text{Diff}(S^1)$, define $H : \text{Diff}(S^1) \times [0,1] \to \text{Diff}(S^1)$ by

$$H(f,t)(\phi) = (1-t)f(\phi) + tA_f(\phi)$$

where $A_f \in O(2)$ is chosen such that $A_f(0) = f(0)$ and, if f is orientation-preserving, so is A_f (i.e. A_f is a rotation) and if f is orientation-reversing, so is A_f (i.e. A_f is a flip). Note that if $f \in \text{Diff}(S^1)$,

$$H(f,0)(\phi) = f(\phi)$$

$$H(f,1)(\phi) = A_f(\phi)$$

for all ϕ and, if $B \in O(2)$, $A_B = B$, so $H(B,t)(\phi) = B(\phi)$ for all ϕ. Since $H(f,t) \in \text{Diff}(S^1)$ for all t, we need only show that H is continuous to demonstrate that H is a strong deformation retraction of $\text{Diff}(S^1)$ onto $O(2)$.

We give $\text{Diff}(S^1)$ the compact-open topology; since addition and multiplication are continuous, we need only demonstrate that the choice of A_f is continuous in this topology. We can denote $A_f = A(f)$ where $A : \text{Diff}(S^1) \to O(2)$ is as defined above. Let

$$V_{C,U} = \{f \in O(2) | C \text{ compact}, U \text{ open and } f(C) \subset U\}$$

be a basic open set in $O(2)$ where C is a closed interval $[\phi_1,\psi_1]$ and U is an open interval (ϕ_2,ψ_2). Then an orientation-preserving element in $V_{C,U}$ (i.e. a rotation) must rotate $\phi = 0$ to at least $\phi_2 - \phi_1$ and at most $\psi_2 - \psi_1$; that is, for all rotations $B \in V_{C,U}$, $B(0) \in (\phi_2 - \phi_1,\psi_2 - \psi_1)$. Hence, if $f \in A^{-1}(V_{C,U})$ is orientation-preserving, then $f(0) \in (\phi_2 - \phi_1,\psi_2 - \psi_1)$. In other words, if O denotes the set of orientation-preserving elements of $\text{Diff}(S^1)$, then

$$A^{-1}(V_{C,U}) \cap O = W_{[0],(\phi_2-\phi_1,\psi_2-\psi_1)} \cap O,$$

where

$$W_{X,Y} = \{f \in \text{Diff}(S^1) | f(X) \subset Y\}.$$
Since \{0\} is compact and \((\phi_2 - \phi_1, \psi_2 - \psi_1)\) is open in \(S^1\), this set is open in \(Diff(S^1)\) provided we can show that \(O\) is open in \(Diff(S^1)\) (see below).

On the other hand, an orientation-reversing element of \(V_{C,U}\) must flip \(\phi = 0\) to at least \(\psi_2 - \phi_1\) and at most \(\phi_2 - \psi_1\); that is, for all flips \(B \in V_{C,U}\), \(B(0) \in (\psi_2 - \phi_1, \phi_2 - \psi_1)\). Hence, if \(f \in A^{-1}(V_{C,U})\) is orientation-reversing, then \(f(0) \in (\psi_2 - \phi_1, \phi_2 - \psi_1)\). In other words, if \(\overline{O}\) denotes the set of orientation-reversing elements of \(Diff(S^1)\), then
\[
A^{-1}(V_{C,U}) \cap \overline{O} = W_{\{0\},(\psi_2 - \phi_1, \phi_2 - \psi_1)} \cap \overline{O}.
\]
Again, this set is open in \(Diff(S^1)\) provided \(\overline{O}\) is open. Putting the above facts together, we see that
\[
A^{-1}(V_{C,U}) = (W_{\{0\},(\phi_2 - \phi_1, \psi_2 - \psi_1)} \cap O) \cup (W_{\{0\},(\psi_2 - \phi_1, \phi_2 - \psi_1)} \cap \overline{O}),
\]
which is open in \(Diff(S^1)\) if \(O\) and \(\overline{O}\) are. Before we prove that \(O\) and \(\overline{O}\) are open, note that this will suffice to complete the proof. Since the open sets in \(S^1\) are generated by the open intervals, when considering open sets \(V_{C,U}\) in \(O(2)\), it suffices to consider the case where \(U\) is an interval. On the other hand, if \(K\) is any compact set in \(S^1\), let \(C_K\) be the interval determined by the “largest” and “smallest” elements of \(K\) (that is, \(C_K\) is a [possibly degenerate] interval of shortest length containing \(K\); note that there may be more than one such: in such a case, simply choose one). Then, since we’re only considering rigid motions of \(S^1\), \(V_{K,U} = V_{C_K,U}\). Therefore, we can restrict our attention to the case where \(K\) is an interval (again, possibly a degenerate interval consisting of a single point).

Now, we turn to demonstrating that \(O\) and \(\overline{O}\) are both open in \(Diff(S^1)\). Since \(O \cap \overline{O} = \emptyset\) and \(O \cup \overline{O} = Diff(S^1)\), this will mean that \(O\) and \(\overline{O}\) are precisely the connected components of \(Diff(S^1)\). Let \(\phi_1 < \phi_2 < \phi_3\). For each \(f \in Diff(S^1)\), choose neighborhoods \(U_{f,i}\) about each of the \(\phi_i\) such that the \(U_{f,i}\) are disjoint and the \(f(U_{f,i})\) are disjoint. Note that, since \(f\) is a diffeomorphism, \(f(U_{f,i})\) is open for all \(i\). Hence
\[
W_f := W_{\{\phi_1\},f(U_{f,1})} \cap W_{\{\phi_2\},f(U_{f,2})} \cap W_{\{\phi_3\},f(U_{f,3})}
\]
is open. Furthermore, \(f \in W_f\). Also, if \(f\) is orientation-preserving, then \(W_f\) contains only orientation-preserving maps, and if \(f\) is orientation-reversing, then \(W_f\) contains only orientation-reversing maps. That is, \(W_f\) is an open neighborhood containing \(f\) and entirely contained in either \(O\) or \(\overline{O}\), depending on whether \(f\) is orientation-preserving or -reversing. Since our choice of \(f \in Diff(S^1)\) was arbitrary, this implies that both \(O\) and \(\overline{O}\) are open, completing the proof.

\[\diamondsuit\]

5.

Prove that the subgroup \(\mathcal{D}\) is contractible.
Proof. Let \(f \in \mathcal{D} \). Then, since \(f \) fixes an interval about \(\phi = 0 \), \(f \) is an orientation-preserving diffeomorphism. Furthermore, \(f(0) = 0 \), so, using the notation from problem 4 above, \(H(f, 1) = \text{Id} \), the identity map. Since our choice of \(f \in \mathcal{D} \) was arbitrary, we see that \(H|_{\mathcal{D}} \) homotopes all of \(\mathcal{D} \) to the identity. Thus, \(\mathcal{D} \) is contractible. \(\square \)

7

(1) Compute \(I_1(h_{t,d}) \) explicitly for all \(h_{t,d} \in B^2 \).

Answer: Recall that

\[
h_{t,d}(\phi) = \begin{cases}
\frac{\pi}{2} + (1 + d) \left(\phi - \frac{\pi}{2} \right) - t & \text{for } \phi \in D_2 \\
\frac{3\pi}{2} + (1 - d) \left(\phi - \frac{3\pi}{2} \right) + t & \text{for } \phi \in D_4
\end{cases}
\]

Also,

\[
I_1(h) = \int_0^{2\pi} gh^{-1}(\phi)N(\phi)d\phi
= \int_0^{2\pi} mN(\phi)d\phi + \int_{h(D_2 \cup D_4)} (M - m)N(\phi)d\phi
= \int_{h(D_2 \cup D_4)} (M - m)N(\phi)d\phi,
\]

so

\[
I_1(h_{t,d}) = \int_{h_{t,d}(D_2 \cup D_4)} (M - m)N(\phi)d\phi
= (M - m) \int_{h_{t,d}(7\pi/16)}^{h_{t,d}(9\pi/16)} (\cos \phi, \sin \phi)d\phi + (M - m) \int_{h_{t,d}(25\pi/16)}^{h_{t,d}(23\pi/16)} (\cos \phi, \sin \phi)d\phi
= (M - m) \left[(\sin \phi, -\cos \phi)_{7\pi/16}^{9\pi/16 + d\pi/16} - (\sin \phi, -\cos \phi)_{25\pi/16}^{23\pi/16 + d\pi/16 + t}\right]
= (M - m) \left[(\sin(\phi + d\pi/16 + t) - \sin(\phi))_{7\pi/16}^{9\pi/16 + d\pi/16} + (\sin(\phi + d\pi/16 + t) - \sin(\phi))_{23\pi/16}^{25\pi/16 + d\pi/16 + t}\right]
= \left[(\sin(\phi + d\pi/16 + t) - \sin(\phi))_{7\pi/16}^{9\pi/16 + d\pi/16} + (\sin(\phi + d\pi/16 + t) - \sin(\phi))_{23\pi/16}^{25\pi/16 + d\pi/16 + t}\right]
\]

See attached Maple sheet for a (slight) simplification of this expression.

♣

(2) Show that the arrows along the outside of the “proof in one picture” are a fair portrayal of the values of \(I_1(h_{t,d}) \in \Sigma^1 \).
Answer: Using the above,
\[
I_1(h_{3\pi/16,0}) \approx (M - m)(0.434, 0)
\]
\[
I_1(h_{3\pi/16,1/2}) \approx (M - m)(0.431, 0.320)
\]
\[
I_1(h_{0,1/2}) \approx (M - m)(0.385)
\]
\[
I_1(h_{-3\pi/16,1/2}) \approx (M - m)(-0.431, 0.320)
\]
\[
I_1(h_{-3\pi/16,0}) \approx (M - m)(-0.434, 0)
\]
\[
I_1(h_{3\pi/16,-1/2}) \approx (M - m)(-0.431, -0.320)
\]
\[
I_1(h_{0,-1/2}) \approx (M - m)(0, -0.385)
\]
\[
I_1(h_{3\pi/16,-1/2}) \approx (M - m)(0.431, -0.320)
\]

So the arrows on the “proof in one picture” really are realistic.

(3) Show that I_1 embeds B^2 into the plane \mathbb{R}^2 and takes the center of B^2 to the origin. Conclude that $I_1(\Sigma^1)$ loops once around the origin.

Proof. I can’t figure out how to simplify $I_1(H_{t,d})$ enough to make any headway showing that it’s injective (which would be enough to show that it’s an embedding, given that I_1 is a continuous map from a compact set into \mathbb{R}^2). Note that when $(t, d) = (0, 0),
\[
I_1(h_{0,0}) = (M - m)(\sin 9\pi/16 - \sin 7\pi/16 + \sin 25\pi/16 - \sin 23\pi/16,
- \cos 9\pi/16 + \cos 7\pi/16 - \cos 25\pi/16 + \cos 23\pi/16)
= (0, 0).
\]

Assuming I_1 embeds B^2 into the plane and since we know I_1 maps $(0, 0)$ to the origin, the boundary Σ^1 of B^2 wraps exactly once about the origin. □

(4) Find explicitly the points on $I_1(\Sigma^1)$ which are closest to the origin.

Answer: We restrict I_1 to each of the four sides of Σ^1 and look for critical points (see attached Maple sheets for computations). The critical points are at
\[
(t, d) = (\pm 3\pi/16, 0), (0, \pm 1/2).
\]

Checking each critical point and the corners of Σ^1, we see that the distance to the origin is minimized at $(t, d) = (0, \pm 1/2), with the distance given by $\approx 0.38(M - m)$.

(5) Show how to choose ϵ small enough so that $I(\Sigma^1)$ also loops once around the origin.

Answer: Note that so long as $\|I(h_{t,d}) - I_1(h_{t,d})\| < 0.38(M - m)$, then $I(\Sigma^1)$ must loop once around the origin. Note that f is positive and bounded above on S^1; let B be an upper bound on f which is
at least 1. Now, let $\epsilon = \frac{M-m}{25B}$. Recall that the measure of A is less than 4ϵ. Then

$$\|I(h_{t,d}) - I_1(h_{t,d})\| = \left\| \int_0^{2\pi} fh^{-1}_{t,d}(\phi) N(\phi) d\phi - \int_0^{2\pi} gh^{-1}_{t,d}(\phi) N(\phi) d\phi \right\|$$

$$= \left\| \int_0^{2\pi} (fh^{-1}_{t,d} - gh^{-1}_{t,d})(\phi) N(\phi) d\phi \right\|$$

$$= \left\| \int_{h_{t,d}(E_1 \cup D_2 \cup E_3 \cup D_4)} (fh^{-1}_{t,d}(\phi) - gh^{-1}_{t,d}(\phi)) N(\phi) d\phi \right\|$$

$$+ \left\| \int_{h_{t,d}(A)} (fh^{-1}_{t,d}(\phi) - gh^{-1}_{t,d}(\phi)) N(\phi) d\phi \right\|$$

$$\leq \left\| \int_{h_{t,d}(E_1 \cup D_2 \cup E_3 \cup D_4)} (fh^{-1}_{t,d}(\phi) - gh^{-1}_{t,d}(\phi)) N(\phi) d\phi \right\|$$

$$+ \left\| \int_{h_{t,d}(A)} (fh^{-1}_{t,d}(\phi) - gh^{-1}_{t,d}(\phi)) N(\phi) d\phi \right\|$$

$$\leq \left\| \int_{h_{t,d}(E_1 \cup D_2 \cup E_3 \cup D_4)} \epsilon N(\phi) d\phi \right\| + \left\| \int_{h_{t,d}(A)} fh^{-1}_{t,d}(\phi) N(\phi) d\phi \right\|$$

since both f and g are positive. Now, since f is bounded by B, this implies that

$$\|I(h_{t,d}) - I_1(h_{t,d})\| \leq 2\pi \epsilon + B \left\| \int_{h_{t,d}(A)} N(\phi) d\phi \right\|$$

$$\leq 2\pi \epsilon + B \text{measure}(A)$$

Since $h_{t,d}$ stretches by a factor of at most $3/2$, $\text{measure}(A) \leq 3\epsilon/2$, so

$$\|I(h_{t,d}) - I_1(h_{t,d})\| \leq 2\pi \epsilon + 3B\epsilon/2 = \frac{2\pi(M - m)}{25B} + \frac{3(M - m)}{50}$$

$$\leq (M - m) \left(\frac{2\pi}{25} + \frac{3}{50} \right)$$

$$\approx 0.311(M - m)$$

$$< 0.38(M - m),$$

since $B \geq 1$. Hence, $I(\Sigma^1)$ does indeed wrap once around the origin.

(6) Conclude that there must be a root of the equation

$$I(h) = \int_0^{2\pi} fh^{-1}(\phi) N(\phi) d\phi = 0$$

somewhere inside that 2-cell B^2.
Proof. As we showed in (5) above, \(I(h_{t,d}) \) has winding number about the origin of 1 where \((t, d) \in \Sigma^1 \). On the other hand, for \(|(h_{t,d})| = 0\), \(I(t, d) = (0, 0) \) is a single point and so certainly has winding number 0 about the origin. Now, since \(B^2 \) is contractible, we can continuously deform it to the point \((0, 0)\); composing with \(I \) yields another continuous deformation. Suppose, for the sake of contradiction, that \(I(h_{t,d}) \) is never 0. Then the image under \(I \) of the contraction of \(\Sigma^1 \) can never cross the origin, so its winding number about the origin can never change. But this implies that 1 = 0, which is obviously bad. Thus, we conclude that \(I(h) = 0 \) does indeed have a solution; in particular, it has a solution contained in \(\mathcal{D} \). \(\square \)

B

Let \(C \) be a smooth simple closed curve in 3-space. Let \(r > 0 \) be a real number, and let \(N(C, r) \) denote the set of points in 3-space whose distance from \(C \) is at most \(r \). If \(r \) is sufficiently small, then these disks will not intersect one another, and hence \(N(C, r) \) will be homeomorphic to the product of \(C \) and any one of these disks, and will look like a curvy, perhaps knotted, solid donut. Assume \(r \) is this small, and prove that the volume of \(N(C, r) \) equals the length of \(C \) times the area, \(\pi r^2 \), of any one of the disks.

Proof. First, suppose \(C \) has non-vanishing curvature everywhere. Then the Frenet frame is defined everywhere on \(C \). We may as well assume \(C \) is parametrized by arc length. Let \(L \) be the length of \(C \). Consider a vertical cylinder \(Cyl \) with radius \(r \) and height \(L \); that is,
\[
Cyl := \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 \leq r, z \in [0, L]\}.
\]
Now, using the notation that \(C(s) = (C_1(s), C_2(s), C_3(s)) \), the normal vector \(N(s) = (N_1(s), N_2(s), N_3(s)) \) and the binormal vector \(B(s) = (B_1(s), B_2(s), B_3(s)) \), define the function \(f : Cyl \to N(C, r) \) by
\[
f(x, y, z) = C(z) + xN(z) + yB(z);
\]
then \(f(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z)) \) where
\[
f_1(x, y, z) = C_1(z) + xN_1(z) + yB_1(z) \\
f_2(x, y, z) = C_2(z) + xN_2(z) + yB_2(z) \\
f_3(x, y, z) = C_3(z) + xN_3(z) + yB_3(z).
\]
Thus, the Jacobian of \(f \) is given by
\[
J(f) = \begin{pmatrix}
N_1(z) & B_1(z) & C_1'(z) + xN_1'(z) + yB_1'(z) \\
N_2(z) & B_2(z) & C_2'(z) + xN_2'(z) + yB_2'(z) \\
N_3(z) & B_3(z) & C_3'(z) + xN_3'(z) + yB_3'(z)
\end{pmatrix}
\]
Now, since \(z \) is equal to arc length, the first column of this matrix is just \(N(z) \), the second is \(B(z) \) and the third is
\[
C'(z) + xN'(z) + yB'(z) = T(z) + x(-\kappa(z)T(z) + \tau(z)B(z)) + y(-\tau(z)N(z))
\]
by the Frenet equations. Hence,
\[
\det J(f) = \langle N(z) \times B(z), T(z) - \kappa(z)xT(z) + \tau(z)xB(z) - \tau(z)yN(z) \rangle \\
= \langle T(z), T(z) - \kappa(z)xT(z) + \tau(z)xB(z) - \tau(z)yN(z) \rangle \\
= 1 - x\kappa(z)
\]
Now, the volume of \(N(C, r) \) is given by
\[
\int \int \int_{Cyl} \det J(f) = \int_0^L \int_0^r \int_0^{2\pi} (1 - \rho\kappa(z) \cos \theta) \rho d\theta d\rho dz \\
= \int_0^L \int_0^r 2\pi \rho d\rho dz \\
= \int_0^L \pi r^2 dz \\
= L\pi r^2,
\]
as expected.

Now, if \(C \) has zero curvature somewhere, we’ll split up the computation of the volume. Over those regions where the curvature is non-zero, we’ll integrate the Jacobian as above. Over those regions with zero curvature, \(C \) is cylindrical, so the volume of each such region is simply given by \(L_i \pi r^2 \) where \(L_i \) is the length of each region \(C_i \) with zero curvature. Then, simply adding the volumes for each of these regions yields a total volume of \(L\pi r^2 \). \(\square \)

DRL 3E3A, University of Pennsylvania

E-mail address: shonkwil@math.upenn.edu