Exercise # 1 (points)
If $22 = 5^x \mod 37$, what is x? Use the Pohlig Hellman algorithm.

Exercise # 2 (points)
On the elliptic curve over \mathbb{F}_{29} defined by $y^2 = x^3 + 4x + 20$, compute
a) $(5, 22) + (16, 27)$
b) $2 \cdot (5, 22)$

Exercise # 3 (points)
a) How many points over \mathbb{F}_5 has the elliptic curve defined by $y^2 = x^3 + 3x$?
b) How many points over \mathbb{F}_5 has the elliptic curve defined by $y^2 = x^3 + 4x$?
c) Is the group in a) cyclic?
d) Is the group in b) cyclic?

Exercise # 4 (points)
Describe a few facts and properties which a projective plane has which an affine plane doesn’t have.

Exercise # 5 (points)
Verify the entry $(2, 8)$ (start counting from zero) in the Rijndael S-box. You may use the programs on the course web page to do calculations.

Exercise # 6 (points)
Find the missing digit to make the number 236_014 divisible by 66.
Exercise # 7
(points)
a) Convert 712 into binary, convert \((101010111)_2\) into decimal.
b) Convert \((6651)_7\) into base 9.

Exercise # 8
Find the last two digits of \(666^{999}\).

Exercise # 9
(points)
a) Find all four solutions to \(x^2 \equiv 133 \mod{153}\)
b) Find all two solutions to \(x^2 \equiv 136 \mod{153}\)

Exercise # 10
(points)
a) Is \(X^5 + X^2 + 1\) irreducible over \(\mathbb{F}_2\)?
b) Is \(X^5 + X + 1\) irreducible over \(\mathbb{F}_2\)?

Exercise # 11
(points)
Decipher the following affine ciphertext, using that the plaintext starts with “h” and ends with “y”
\[\text{fchmdiu}\]

Exercise # 12
(points)
Decipher the following Vigenère ciphertext, using that the key is “snow.”
\[\text{wyzehgwyuhfraznenrwjhecfwphenrglps}\]