The exercises are from *Foundations of Mathematical Analysis* by Richard Johnsonbaugh and W.E. Pfaffenberger.

17.4. Let \(\{a_n\} \) be a sequence with positive terms such that \(\lim_{n \to \infty} a_n = L > 0 \). Let \(x \) be a real number. Prove that \(\lim_{n \to \infty} a_n^x = L^x \).

Solution. Let \(\epsilon > 0 \). By Theorem 17.4, note that \(L < (L^x + \epsilon)^{1/x} \) and \(L > (L^x - \epsilon)^{1/x} \). Since \(\lim_{n \to \infty} a_n = L \), there exists some \(N \) such that \(n \geq N \) implies \(a_n < (L^x + \epsilon)^{1/x} \) and \(a_n > (L^x - \epsilon)^{1/x} \). Hence by Theorem 17.4, for \(n \geq N \) we have \(a_n^x < L^x + \epsilon \) and \(a_n^x > L^x - \epsilon \). This shows \(\lim_{n \to \infty} a_n^x = L^x \).

19.3. Let \(0 \leq \alpha < 1 \), and let \(f \) be a function from \(\mathbb{R} \to \mathbb{R} \) which satisfies

\[
|f(x) - f(y)| \leq \alpha|x - y|
\]

for all \(x, y \in \mathbb{R} \). Let \(a_1 \in \mathbb{R} \), and let \(a_{n+1} = f(a_n) \) for \(n = 1, 2, \ldots \). Prove that \(\{a_n\} \) is a Cauchy sequence.

Solution. First we prove by induction on \(n \) that \(|a_{n+1} - a_n| \leq \alpha^{n-1}|a_2 - a_1| \) for all \(n \in \mathbb{N} \). The base case \(n = 1 \) is obvious. Assuming the formula is true when \(n = k \), we show it is true for \(n = k + 1 \):

\[
|a_{k+2} - a_{k+1}| = |f(a_{k+1}) - f(a_k)| \leq \alpha|a_{k+1} - a_k| \leq \alpha^{k-1}|a_2 - a_1| = \alpha^k|a_2 - a_1|
\]

Hence, by induction, this formula is true for all \(n \).

Note that if \(|a_2 - a_1| = 0 \), then \(a_n = a_1 \) for all \(n \), and so the sequence is clearly Cauchy. Hence we consider the case when \(|a_2 - a_1| \neq 0 \). Now, given any \(\epsilon > 0 \), pick \(N \) such that \(\alpha^{N-1} < \frac{\epsilon}{|a_2 - a_1|} \), which we can do because \(0 \leq \alpha < 1 \implies \lim_{n \to \infty} \alpha^n = 0 \). Then, for any \(m, n \geq N \), with \(m \geq n \), we have

\[
|a_m - a_n| \leq \sum_{i=n}^{m-1} |a_{i+1} - a_i| \quad \text{by the triangle inequality}
\]

\[
\leq \sum_{i=n}^{m-1} \alpha^{i-1}|a_2 - a_1| \quad \text{by our formula above}
\]

\[
= |a_2 - a_1| \sum_{i=n}^{m-1} \alpha^{i-1}
\]

\[
= |a_2 - a_1| \sum_{i=N}^{\infty} \alpha^{i-1}
\]

\[
= |a_2 - a_1| \frac{\alpha^{N-1}}{1 - \alpha} \quad \text{by the formula for the sum of an infinite geometric series}
\]

\[
< \epsilon \quad \text{by our choice of} \ N.
\]

Hence \(\{a_n\} \) is a Cauchy sequence.
20.6. Compute \(\limsup_{n \to \infty} a_n \) and \(\liminf_{n \to \infty} a_n \), where \(a_n \) is ...

Solution.

(a) \(\frac{1}{n} \)

Since we know \(\lim_{n \to \infty} \frac{1}{n} = 0 \), we know \(\limsup_{n \to \infty} \frac{1}{n} = \liminf_{n \to \infty} \frac{1}{n} \) by Theorem 20.4.

(b) \((1 + \frac{1}{n})^n \)

Since we know \(\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \), we know \(\limsup_{n \to \infty} (1 + \frac{1}{n})^n = e = \liminf_{n \to \infty} (1 + \frac{1}{n})^n \) by Theorem 20.4.

(c) \((-1)^n (1 - \frac{1}{n}) \)

Since \(-1 \leq (1 + \frac{1}{n})^n \leq 1\) for all \(n \), we have \(\liminf_{n \to \infty} (1 + \frac{1}{n})^n \geq -1 \) and \(\limsup_{n \to \infty} (1 + \frac{1}{n})^n \leq 1 \). Since the subsequence \(\{a_{2n-1}\} \) has limit \(-1\) and the subsequence \(\{a_{2n}\} \) has limit 1, we have \(\liminf_{n \to \infty} (1 + \frac{1}{n})^n \leq -1 \) and \(\limsup_{n \to \infty} (1 + \frac{1}{n})^n \geq 1 \). Hence \(\liminf_{n \to \infty} (1 + \frac{1}{n})^n = -1 \) and \(\limsup_{n \to \infty} (1 + \frac{1}{n})^n = 1 \).

20.7. Compute \(\limsup_{n \to \infty} a_n \) and \(\liminf_{n \to \infty} a_n \) and \(\mathcal{L}_a \), where \(a_1, a_2, \ldots \) is an enumeration of the rational numbers in the closed interval \([0, 1]\).

Solution. We show that \(\mathcal{L}_a = [0, 1] \). It is easy to show \(\mathcal{L}_a \subset [0, 1] \).

To show \(\mathcal{L}_a \supset [0, 1] \), let \(s \in [0, 1] \). First we consider the case \(s > 0 \). By Theorem, 17.1, there exists an increasing rational sequence \(\{r_n\} \) with limit \(s \). As \(s > 0 \), for \(n \) sufficiently large we have \(r_n \geq 0 \), so we may assume that \(r_n \geq 0 \) for all \(n \), hence \(r_n \in [0, 1] \) for all \(n \). By induction on \(n \), we define a sequence \(\{b_n\} \) which is a subsequence of both \(\{a_n\} \) and \(\{r_n\} \). For the base case, set \(b_1 = r_1 = a_k \) for some integer \(k \). For the inductive step, suppose we have defined \(b_1, \ldots, b_n \) and \(b_n = r_l = a_k \). Since \(a_1, a_2, \ldots \) is an enumeration of the rational numbers, and since the set \(\{r_{l+1}, r_{l+2}, \ldots\} \) is infinite but \(\{a_1, \ldots, a_k\} \) is finite, there exists some \(k' > k \) such that \(a_{k'} = r_{l'} \) for some \(l' > l \). Set \(b_{n+1} = r_{l'} = a_{k'} \). Note that \(\{b_n\} \) is a subsequence of both \(\{a_n\} \) and \(\{r_n\} \). Since \(\{b_n\} \) is a subsequence of \(\{r_n\} \), we have \(\lim_{n \to \infty} b_n = \lim_{n \to \infty} r_n = s \). Since \(\{b_n\} \) is a subsequence of \(\{a_n\} \), this shows \(s \in \mathcal{L}_a \). The case \(s = 0 \) is analogous. Hence \(\mathcal{L}_a \supset [0, 1] \), so \(\mathcal{L}_a = [0, 1] \).

Since \(\mathcal{L}_a = [0, 1] \), we have \(\limsup_{n \to \infty} a_n = \text{lub}(\mathcal{L}_a) = 1 \) and \(\liminf_{n \to \infty} a_n = \text{glb}(\mathcal{L}_a) = 0 \).

20.9. Let \(\{a_n\} \) be a bounded sequence such that every convergent subsequence of \(\{a_n\} \) has a limit \(L \). Prove that \(\lim_{n \to \infty} a_n = L \).

Solution.

Method 1: Note that \(\mathcal{L}_a = \{L\} \). Hence \(\limsup_{n \to \infty} a_n = \text{lub}(\mathcal{L}_a) = L = \text{glb}(\mathcal{L}_a) = \liminf_{n \to \infty} a_n \). So by Theorem 20.4, \(\lim_{n \to \infty} a_n = L \).

Method 2: Suppose for a contradiction that \(\{a_n\} \) does not have limit \(L \). Hence there exists an \(\epsilon > 0 \) such that for any integer \(N \), there exists some \(n > N \) with \(|a_n - L| > \epsilon \). This allows us to define \(n_1 < n_2 < n_3 \ldots \) such that \(|a_{n_i} - L| > \epsilon \) for all \(i \). Since \(\{a_{n_i}\} \) is a bounded sequence, by Bolzano-Weierstrass it has a convergent subsequence, which clearly does not converge to \(L \). This is a contradiction, and so it must be that \(\lim_{n \to \infty} a_n = L \).

20.13. Let \(\{a_n\} \) and \(\{b_n\} \) be sequences such that \(\{a_n\} \) is convergent and \(\{b_n\} \) is bounded. Prove that

\[
\limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n
\]

and

\[
\liminf_{n \to \infty} (a_n + b_n) = \liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n
\]
\textit{Solution.} Since \(\{a_n\} \) is convergent, it is bounded. So Theorem 20.6 gives us
\[
\limsup_{n \to \infty}(a_n + b_n) \leq \limsup_{n \to \infty}a_n + \limsup_{n \to \infty}b_n
\]
Let \(\lim_{n \to \infty}a_n = L \). Note if \(l \in L_b \), then \(l = \lim_{k \to \infty}b_{n_k} \) for some \(n_k \). Hence
\[
\lim_{k \to \infty}(a_{n_k} + b_{n_k}) = \lim_{k \to \infty}a_{n_k} + \lim_{k \to \infty}b_{n_k} = L + l
\]
so \(L + l \in L_{a+b} \). This shows that
\[
\limsup_{n \to \infty}(a_n + b_n) = \text{hup} L_{a+b} \geq L + \text{hup} L_b = \limsup_{n \to \infty}a_n + \limsup_{n \to \infty}b_n
\]
We’ve shown
\[
\limsup_{n \to \infty}(a_n + b_n) = \limsup_{n \to \infty}a_n + \limsup_{n \to \infty}b_n
\]
The proof that
\[
\liminf_{n \to \infty}(a_n + b_n) = \liminf_{n \to \infty}a_n + \liminf_{n \to \infty}b_n
\]
is analogous.

20.20. Let \(\{a_n\} \) be a sequence of positive numbers such that \(\lim_{n \to \infty}a_n = L \). Prove that \(\lim_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} = L \).

\textit{Solution.} Let \(\epsilon > 0 \). Then there exists some \(N \) such that \(n \geq N \) implies \(a_n \leq L + \epsilon \). Note we have
\[
(a_1 \cdots a_{N+m})^{1/(N+m)} = (a_1 \cdots a_N)^{1/(N+m)}(a_{N+1} \cdots a_{N+m})^{1/(N+m)} \leq (a_1 \cdots a_N)^{1/(N+m)}(L + \epsilon)^{m/(N+m)} = (a_1 \cdots a_N(L + \epsilon)^{-N})^{1/(N+m)}(L + \epsilon)
\]
Hence we have
\[
\limsup_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} = \limsup_{m \to \infty}(a_1 \cdots a_{N+m})^{1/(N+m)} \leq \limsup_{m \to \infty}(a_1 \cdots a_N(L + \epsilon)^{-N})^{1/(N+m)}(L + \epsilon) \quad \text{by Theorem 20.5}
\]
\[
= L + \epsilon \quad \text{by Theorem 16.4}
\]
Hence \(\limsup_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} \leq L + \epsilon \) for all \(\epsilon > 0 \), so \(\limsup_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} \leq L \). Analogously, one can show that \(\liminf_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} \geq L \). Hence by Theorem 20.2 and 20.4, we have \(\lim_{n \to \infty}(a_1a_2 \cdots a_n)^{1/n} = L \).

21.2. Let \(A_n = \text{lub}\{a_n, a_{n+1}, \ldots\} \) and \(B_n = \text{glb}\{a_n, a_{n+1}, \ldots\} \) for \(n = 1, 2, \ldots \). Compute \(A_n, B_n, \lim_{n \to \infty} A_n, \) and \(\lim_{n \to \infty} B_n \), where \(a_n = \)

\textit{Solution.}

(a) \((-1)^n \)

Clearly \(A_n = 1 \) and \(B_n = -1 \) so \(\lim_{n \to \infty} A_n = 1 \) and \(\lim_{n \to \infty} B_n = -1 \).

(b) \(\frac{1}{n} \)

Clearly \(A_n = \frac{1}{n} \) and \(B_n = 0 \) so \(\lim_{n \to \infty} A_n = 0 \) and \(\lim_{n \to \infty} B_n = 0 \).

(c) \((1 + \frac{1}{n})^n \)

By Theorem 16.6 the sequence \(\{(1 + \frac{1}{n})^n\} \) is increasing and convergent with limit \(e \). So \(A_n = e \) and \(B_n = (1 + \frac{1}{n})^n \) so \(\lim_{n \to \infty} A_n = e \) and \(\lim_{n \to \infty} B_n = e \).

(d) \(\frac{(-1)^n}{n} \)
22.4. Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) converges and find its sum.

Solution. We use partial fractions to rewrite the terms. We try

\[
\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \implies 1 = (n+1)A + nB = A + n(A+B) \implies A = 1 \text{ and } B = -1.
\]

Indeed, we have \(\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \). So the \(n \)-th partial sum is

\[
s_n = a_1 + a_2 + \cdots + a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}
\]

This is an example of a **telescoping** series. Since

\[
\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1,
\]

we have that \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) converges, and \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \).

22.5. Give an example of divergent series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) such that \(\sum_{n=1}^{\infty} (a_n + b_n) \) converges.

Solution. Let \(a_n = 1 \) and \(b_n = -1 \) for all \(n \). Then \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are geometric series with \(r = 1 \), and hence diverge by Theorem 22.4. However, \(a_n + b_n = 0 \) for all \(n \) so the \(n \)-th partial sum of \(\sum_{n=1}^{\infty} (a_n + b_n) \) is zero for all \(n \), giving \(\sum_{n=1}^{\infty} (a_n + b_n) = 0 \) converges.

24.9. Prove that if \(\{a_n\} \) is a decreasing sequence of positive numbers and \(\sum_{n=1}^{\infty} a_n \) converges, then \(\lim_{n \to \infty} na_n = 0 \). Deduce that \(\sum_{n=1}^{\infty} \frac{1}{n^s} \) diverges if \(0 \leq s \leq 1 \).

Solution. Let \(\epsilon > 0 \). Let \(s_n = \sum_{k=1}^{n} a_k \). Since \(\{s_n\} \) converges, \(\{s_n\} \) is Cauchy so there exists some \(N \) such that \(n, m \geq N \) implies \(|s_n - s_m| < \epsilon \). In particular, for \(n \geq N \) we have \((n-N)a_n \leq a_{n+1} + \cdots + a_n = |s_n - s_N| < \epsilon \). Hence \(\lim_{n \to \infty} (n-N)a_n = 0 \). By Theorem 22.3, we have \(\lim_{n \to \infty} Na_n = N \lim_{n \to \infty} a_n = 0 \) too. So by Theorem 12.2, we have

\[
\lim_{n \to \infty} na_n = \lim_{n \to \infty} (n-N)a_n + \lim_{n \to \infty} Na_n = 0
\]

so we’re done.

Now, note that for \(0 \leq s \leq 1 \), we have \(\lim_{n \to \infty} \frac{1}{n^s} = \lim_{n \to \infty} n^{1-s} \neq 0 \). By the above, this means that \(\sum_{n=1}^{\infty} \frac{1}{n^s} \) cannot converge, that is, it diverges.

25.2. Let \(\{a_n\} \) satisfy the hypotheses of the alternating series test. Let \(\{s_n\} \) denote the sequence of partial sums of the series \(\sum_{n=1}^{\infty} (-1)^{n+1} a_n \). Prove that the sequence \(\{s_{2n-1}\} \) is decreasing and bounded below by 0.

Solution. Note \(s_{2(n+1) - 1} = s_{2n-1} - a_{2n} + a_{2n+1} \leq s_{2n-1} \) since \(a_{2n+1} \leq a_{2n} \). Hence the sequence \(\{s_{2n-1}\} \) is decreasing.

Note \(s_{2n-1} = (a_1 - a_2) + (a_3 - a_4) + \cdots + (a_{2n-3} - a_{2n-2}) + a_{2n-1} \), where each term in parenthesis is bounded below by 0, and \(a_{2n-1} \) is also bounded below by 0. Hence \(\{s_{2n-1}\} \) is bounded below by 0.
25.4. Give an example of a sequence \(\{a_n\} \) of positive numbers such that \(\lim_{n \to \infty} a_n = 0 \), but the series \(\sum_{n=1}^\infty (-1)^{n+1} a_n \) diverges.

Solution. Let \(a_n = \begin{cases} \frac{2}{n+1} & n \text{ odd} \\ 0 & n \text{ even} \end{cases} \). Then \(\lim_{n \to \infty} a_n = 0 \) but the \((2n - 1)\)-th partial sum of \(\sum_{n=1}^\infty (-1)^{n+1} a_n \) is equal to the \(n\)-th partial sum of \(\sum_{n=1}^\infty \frac{1}{n} \). Since \(\sum_{n=1}^\infty \frac{1}{n} \) diverges by Corollary 24.3, \(\sum_{n=1}^\infty (-1)^{n+1} a_n \) also diverges.

26.4. Prove that if \(\sum_{n=1}^\infty a_n \) converges absolutely, then \(\sum_{n=1}^\infty a_n^2 \) converges.

Solution. By Theorem 22.3, we have \(\lim_{n \to \infty} |a_n| = 0 \). So by Theorem 13.2, \(\{a_n\} \) is bounded. Hence \(\{a_n\} \) is bounded. We apply part (i) of Theorem 26.4 (replacing \(\{b_n\} \) with \(\{a_n\} \)) to see that \(\sum_{n=1}^\infty a_n a_n = \sum_{n=1}^\infty a_n^2 \) converges absolutely. Since all terms are non-negative, \(\sum_{n=1}^\infty a_n^2 \) converges.

26.8. Let \(\{a_n\} \) be a sequence of positive numbers. Prove that if \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \) then \(\lim_{n \to \infty} a_n^{1/n} = L \). Deduce \(\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} = e \).

Solution. Define the sequence \(\{b_n\} \) by \(b_1 = a_1 \) and \(b_n = \frac{a_n}{a_{n-1}} \) for \(n \geq 2 \). Since \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \), we have \(\lim_{n \to \infty} b_n = L \). Note that \(a_n = b_1 b_2 \cdots b_n \). Applying exercise 20.20 to the sequence \(\{b_n\} \), we get

\[
\lim_{n \to \infty} a_n^{1/n} = \lim_{n \to \infty} (b_1 b_2 \cdots b_n)^{1/n} = L
\]

Now, let \(a_n = \frac{n^n}{n!} \). Note that

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)!} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} \frac{n+1}{n} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e
\]

By the conclusion above, we have

\[
\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} = \lim_{n \to \infty} a_n^{1/n} = e
\]