Homework 6: Angles and review problems
Angle problems are due Wed 2/22. Review problems are for the midterm on Friday 2/24.

Angles:
1. Let $\vec{u} = (\sqrt{2}/2, \sqrt{2}/2)$ and let $\vec{v} = (\sqrt{2}/2, -\sqrt{2}/2)$.
 (i) Show that \vec{u} and \vec{v} are perpendicular to each other and have length 1.
 (Then U and V are called an orthonormal set of vectors).
 (ii) Show that for any $\vec{w} = (x, y)$ then $\vec{w} = (\vec{w} \cdot \vec{u})\vec{u} + (\vec{w} \cdot \vec{v})\vec{v}$.
2. Let $A = (0, 0)$, $B = (1, 0)$, and $C = (\sqrt{3}, 1)$.
 (i) What is $\angle BAC$?
 (ii) Compare this angle with the approximation $\arctan(w) = w - w^3/3 + w^5/5$ when
 $w = 1/\sqrt{3}$ and show the absolute value of the error is bounded by $w^7/7$.
 (iii) Repeat with $C = (1, \sqrt{3})$ and explain what happens.
3. Let $\vec{u} = (\cos(\alpha), \sin(\alpha))$ and let $\vec{v} = (\cos(\beta), \sin(\beta))$. Show that the angle sum of \vec{u}
 and \vec{v} is $(\cos(\alpha + \beta), \sin(\alpha + \beta))$ using trig formulas.

Review Problems: do not hand in
 HW1, #3
 HW2, Parallel #2
 HW3, Euclid #1
 HW3, Birkoff #1
 HW3, Birkoff #3
 HW4, Birkoff #2
 HW4, Similarity #1
 HW5, #3c
 HW5, #7
 HW6, #1