EXAM I 5:00-6:50PM, Mar 7, 2019

Name: \qquad Instructor: \qquad Time your class meets: \qquad
HONOR PLEDGE I have not given, received, or used any unauthorized assistance on this exam. Furthermore, I agree that I will not share any information about the questions on this exam with any other student before graded exams are returned.

Signature: \qquad Date: \qquad

- You have one hour and fifty minutes to complete this exam.
- No notes, books, or other references are allowed during this exam.
- Calculators are not allowed during the exam.
- A two-sided cheat sheet of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ or smaller is allowed during the exam.
- There are questions on the front of the page. Answers must be written in the exam, and you may use the back of each page if you need more space.
- You must show all work to receive credit. Answers for which no work is shown will receive no credit unless specifically stated otherwise.

Question	Score	Maximum
1		15
2		15
3		15
4		20
5		20
6		15
Total		100

1. ($\mathbf{1 5}$ points) Short answer problems.
(a) Find the equilibrium points and determine their stability for the differential equation $y^{\prime}=y^{3}-9 y$.
(b) Put the following ordinary differential equations into all applicable categories below.
(a) $y^{\prime}=y^{2}-t$
(b) $t x^{\prime}=x$
(c) $y^{\prime}-4 y=e^{-3 t}$
(d) $(2 x+y) d x+(x-6 y) d y=0$
(e) $y^{\prime}=\cos (t y)$
(f) $y y^{\prime \prime}+t^{2} y=\sin (t)$
(g) $y^{\prime}=x^{2}$
(h) $\quad x^{\prime}=\frac{2 t x}{1+x}$

Separable equations:
First order linear equations: \qquad
Exact equations: \qquad
Nonlinear equations: \qquad
None of the above: \qquad
(c) The differential equation $y^{\prime \prime}-3 y^{\prime}-4 y=0$ has a general solution of

$$
y(t)=C_{1} e^{-t}+C_{2} e^{4 t} .
$$

What is the particular solution to this differential equation such that $y(0)=5$ and $y^{\prime}(0)=10$?
2. ($\mathbf{1 5}$ points) Consider first order differential equation

$$
t^{2} y^{\prime}=2 t y+t^{4} \cos (4 t)
$$

(a) Find its general solution.
(b) Find its particular solution such that $y(\pi)=1$.
3. (15 points) Consider a first-order ODE:

$$
(4 x y+2 y \cos (x)) d x+\left(3 x^{2}+3 \sin (x)\right) d y=0 .
$$

(a) Show that this differential equation is not exact;
(b) This differential equation has an integrating factor that depends on y only. Find such an integrating factor;
(c) Find the general solution of this differential equation.
4. (20 points) Consider the differential equation $y^{\prime \prime}-2 y^{\prime}+3 y=0$.
(a) What is the characteristic polynomial of this differential equation?
(b) Determine the root(s) of this characteristic polynomial.
(c) What is the real-valued general solution to this differential equation?
(d) Circle the graph that most accurately resembles the typical behavior of the real-valued general solution.

5. (20 points) Consider a lake that is stocked with walleye pike and that the population of pike is governed by the logistic equation

$$
P^{\prime}=f(P)=0.1 P\left(1-\frac{P}{10}\right)
$$

where time is measured in days and P in thousands of fish.
(a) Use the graph of $f(P)$ to develop a phase line for the autonomous equation $P^{\prime}=f(P)$. Classify each equilibrium point as either unstable or asymptotically stable.
(b) Sketch the equilibrium solutions in the $t P$-plane. These equilibrium solutions divide the $t P$-plane into regions. Sketch at least one solution trajectory in each of these regions.
(c) What will happen to $P(t)$ if the initial population is 7500 fish?
(d) Now consider a new scenario in which 160 fish are removed each day. Modify the logistic model to account for the fishing to get a new differential equation $P^{\prime}=g(P)$. What shall the function $g(P)$ be?
(e) Sketch the equilibrium solutions in the $t P$-plane for this new scenario. These equilibrium solutions divide the $t P$-plane into regions. Sketch at least one solution trajectory in each of these regions. (Hint: $P^{2}-10 P+16=(P-2)(P-8)$.)
(f) If the initial fish population is 1000 , what happens to the fish as time passes?
6. ($\mathbf{1 5}$ points) Consider the first-order differential equation $y^{\prime}=\frac{y^{2 / 3}}{t^{2}-4}$.
(a) Find all initial conditions $\left(t_{0}, y_{0}\right)$ for which the equation is NOT guaranteed to have a unique solution.
(b) Show that $y(t)=0$ is a solution to the equation with the initial condition $y(0)=0$.
(c) Assume that $y(t)$ is not constantly zero in each of the following intervals of t. Determine whether $y(t)$ is increasing or decreasing in the interval:
$y(t)$ is \qquad in $(-\infty,-2)$;
$y(t)$ is \qquad in $(-2,2)$;
$y(t)$ is \qquad in $(2, \infty)$.
(d) Now suppose that $y(t)$ is a solution to the equation with the initial condition $y(0)=1$. Based on the uniqueness theorem, which of the following are true statements? (Select all that apply.)

- $y(t)=0$ is possible at $t=-2$.
- $y(t)=0$ is possible at $t=-1$.
- $y(t)=0$ is possible at $t=0$.
- $y(t)=0$ is possible at $t=1$.
- $y(t)=0$ is possible at $t=2$.
- $y(t)=0$ is not possible for any t.

