MATH340, Spring 2019 EXAM I Colorado State University

EXAM I
5:00-6:50PM, Mar 7, 2019

Name: Instructor: Time your class meets:

HONOR PLEDGE I have not given, received, or used any unauthorized assistance on this
exam. Furthermore, I agree that I will not share any information about the questions on this exam

with any other student before graded exams are returned.

Signature: Date:

e You have one hour and fifty minutes to complete this exam.

e No notes, books, or other references are allowed during this exam.

e Calculators are not allowed during the exam.

e A two-sided cheat sheet of 8%” x 11" or smaller is allowed during the exam.

e There are questions on the front of the page. Answers must be written in the exam, and you

may use the back of each page if you need more space.

e You must show all work to receive credit. Answers for which no work is shown will receive no

credit unless specifically stated otherwise.

’ Question ‘ Score ‘ Maximum

1 15
2 15
3 15
4 20
5 20
6 15
Total 100
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1. (15 points) Short answer problems.

(a) Find the equilibrium points and determine their stability for the differential equation 3’ = 3> —9y.

(b) Put the following ordinary differential equations into all applicable categories below.

(a) oy =9y>—t (b) ti' ==
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Separable equations:

First order linear equations:

Exact equations:

Nonlinear equations:

None of the above:

(¢) The differential equation y” — 3y’ — 4y = 0 has a general solution of
y(t) = Cre ' + Coet.

What is the particular solution to this differential equation such that y(0) = 5 and ¢'(0) = 107
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2. (15 points) Consider first order differential equation
2y = 2ty + t* cos(4t).

(a) Find its general solution.

(b) Find its particular solution such that y(r) = 1.
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3. (15 points) Consider a first-order ODE:
(4xy + 2y cos(x))dz + (3z% 4 3sin(x))dy = 0.

(a) Show that this differential equation is not exact;

(b) This differential equation has an integrating factor that depends on y only. Find such an inte-

grating factor;

(c¢) Find the general solution of this differential equation.



MATH340, Spring 2019 EXAM I Colorado State University

4. (20 points) Consider the differential equation y” — 2y’ + 3y = 0.

(a) What is the characteristic polynomial of this differential equation?

(b) Determine the root(s) of this characteristic polynomial.

(c) What is the real-valued general solution to this differential equation?

(d) Circle the graph that most accurately resembles the typical behavior of the real-valued general

N AAAt
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solution.
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5. (20 points) Consider a lake that is stocked with walleye pike and that the population of pike

is governed by the logistic equation

P'=f(P)=0.1P <1 - 11;)

where time is measured in days and P in thousands of fish.

(a) Use the graph of f(P) to develop a phase line for the autonomous equation P’ = f(P). Classify

each equilibrium point as either unstable or asymptotically stable.

(b) Sketch the equilibrium solutions in the ¢ P-plane. These equilibrium solutions divide the ¢ P-plane

into regions. Sketch at least one solution trajectory in each of these regions.

(c) What will happen to P(t) if the initial population is 7500 fish?
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(d) Now consider a new scenario in which 160 fish are removed each day. Modify the logistic model
to account for the fishing to get a new differential equation P’ = g(P). What shall the function
g(P) be?

(e) Sketch the equilibrium solutions in the ¢ P-plane for this new scenario. These equilibrium solu-
tions divide the tP-plane into regions. Sketch at least one solution trajectory in each of these
regions. (Hint: P? — 10P + 16 = (P — 2)(P —8).)

(f) If the initial fish population is 1000, what happens to the fish as time passes?
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6. (15 points) Consider the first-order differential equation 3’ =

t2

2/3

(a) Find all initial conditions (to,yo) for which the equation is NOT guaranteed to have a unique

solution.

(b) Show that y(t) = 0 is a solution to the equation with the initial condition y(0) = 0.

(c) Assume that y(t) is not constantly zero in each of the following intervals of t. Determine whether

y(t) is increasing or decreasing in the interval:

in (—OO, _2);
in (_27 2);

in (2,00).

(d) Now suppose that y(t) is a solution to the equation with the initial condition y(0) = 1. Based

on the uniqueness theorem, which of the following are true statements? (Select all that apply.)

*y
*y
*y

is possible at t = —2.
is possible at t = —1.
is possible at t = 0.
is possible at ¢t = 1.
is possible at t = 2.

is not possible for any ¢.



