MATH495.3 (CRN 13695)

Laboratory \# 2 : Functions and simple flow control

1) Review of Arrays

The first 8 Fibonacci numbers are $1,1,2,3,5,8,13,21$. The first 8 triangular numbers are $1,3,6,10,15,21,28,36$. Construct two arrays called fibonacci and triangle whose elements are the first 8 elements of these two sequences. Let F_{i} and T_{i} be the i th Fibonacci number and i th triangular number respectively. Calculate the following

1. Compute $8 \times F_{i}$ for $i=1, \ldots, 8$
2. Compute $F_{i}+T_{i}$ for $i=1, \ldots, 8$
3. Compute $F_{i} \times T_{i}$ for $i=1, \ldots, 8$
4. Compute $\frac{F_{i}}{T_{i}}$ for $i=1, \ldots, 8$
5. Compute $\sin \left(F_{i}\right)$ for $i=1, \ldots, 8$
6. Compute $e^{T_{i}}$ for $i=1, \ldots, 8$
7. Compute $\max \left(F_{i}^{3}, T_{i}^{2}\right)$ for $i=1, \ldots, 8$

2) Fibonacci Computations

Fibonacci numbers are defined as:
i) $f(1)=1$
ii) $f(2)=1$
iii) $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$ for $n \geq 3$

Create a function with input n that outputs the nth Fibonacci number. Test your function with a few examples from the console. Turn in the function m-file to me so that I can test it too!

3) Intro to Discrete-Time Dynamical Systems

Suppose a population changes only at a discrete set of times. Of course we live in a continuous-time world, but there are many situations where this approximation is useful. For instance, while a population grows continuously, we may only be able to monitor the population once a year. Let x_{t} denote the population at time t, where t may be measured in hours, days, years, microseconds, etc... For this problem, let's suppose t is measured in years. So, the population after 4 years is represented by x_{4}.

Let x_{t+1} represent the population at time $t+1$, that is, x_{t+1} is the population one year after year t. A discrete-time dynamical system is an equation which describes how a variable (such as a population) changes in time, but only for a discrete set of times. For example, if a population doubles every year, it would be modeled by the discrete-time dynamical system:

$$
x_{t+1}=2 x_{t} .
$$

A more general discrete-time dynamical system can be written as follows:
New_Population $=$ Growth_Rate $*$ Previous_Population.
Suppose that instead of doubling every year (a growth rate of 2), the growth rate of a population changes at random every year. Specifically, there is a 50% chance that the annual growth rate is 0.86 and a 50% chance that the annual growth rate is 1.16 .

Write an m-file (not necessarily a function) that simulates the population growth over 1000 years, if the initial population $x_{0}=100$. Use the MatLab function $\operatorname{rand}(\cdot)$ to "decide" whether the population grows or decays in any given year. Plot the population against time, labeling your axes and titling the graph. Turn in the plot and the m-file you used to create it.

