Introduction to Voting Theory

Arrow's Impossibility Theorem
A method for determining election results that is democratic and always fair is a mathematical impossibility.

Ballots- how individual voters express opinions

* Top Choice Ballot- most familar, voter picks first choice only
* Preference Ballot- not the most common type, choices listed in order of preference

Example:
List the following fruits in order of preference:
Apple, Banana, Mango, Pear:
(1) Mango
(2) Banana
(3) Apple
(4) Pear

Two important voting properties to use with
Preference Ballots:

Transitivity of individual preferences if a voter prefers \mathbf{A} to \mathbf{B} and \mathbf{B} to \mathbf{C}, then the voter prefers \mathbf{A} to \mathbf{C}.

Elimination of a Candidate

If a voter ranks candidates $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and candidate \mathbf{B} drops out of the election, then the new rank is $\mathbf{A}, \mathrm{C}, \mathrm{D}$. (i.e. relative preferences are preserved)

Using preference ballots

Some sample ballots:

Ballot									
$1^{\text {st }}$	M	$1^{\text {st }}$	B	$1^{\text {st }}$	M	$1{ }^{\text {st }}$	M	$1^{\text {st }}$	B
$2^{\text {nd }}$	P	$2^{\text {nd }}$	M	$2^{\text {nd }}$	P	$2^{\text {nd }}$	A	$2^{\text {nd }}$	M
$3{ }^{\text {rd }}$	A	$3{ }^{\text {rd }}$	A	$3{ }^{\text {rd }}$	A	$3{ }^{\text {rd }}$	P	$3{ }^{\text {rd }}$	A
$4^{\text {th }}$	B	$4^{\text {th }}$	P	$4^{\text {th }}$	B	$4^{\text {th }}$	B	$4^{\text {th }}$	P

Make a Preference Schedule
Step 1: combine identical ballots

Ballot									
$1^{\text {st }}$	M	$1^{\text {st }}$	M	$1{ }^{\text {st }}$	B	$1{ }^{\text {st }}$	B	$1^{\text {st }}$	M
$2^{\text {nd }}$	P	$2^{\text {nd }}$	P	$2^{\text {nd }}$	M	$2^{\text {nd }}$	M	$2^{\text {nd }}$	A
$3{ }^{\text {rd }}$	A	$3{ }^{\text {rd }}$	A	$3{ }^{\text {rd }}$	A	$3^{\text {rd }}$	A	$3{ }^{\text {rd }}$	P
$4^{\text {th }}$	B	$4^{\text {th }}$	B	$4^{\text {th }}$	P	$4^{\text {th }}$	P	$4^{\text {th }}$	B

Step 2: Organize results in a table

Preference Schedule: Favorite Fruit			
Number of voters	2	2	1
First choice	M	B	M
Second choice	P	M	A
Third choice	A	A	P
Fourth choice	B	P	B

Consider another election: The Math Appreciation
Society is voting for president. The candidates are Alisha, Boris, Carmen, and Dave. 37 club members vote, using a preference ballot.

Summary of the 37 ballots:
Preference Schedule: MAS Election

Number of voters	14	10	8	4	1
First choice	A	C	D	B	C
Second choice	B	B	C	D	D
Third choice	C	D	B	C	B
Fourth choice	D	A	A	A	A

Plurality Method
Candidate with the most first place votes wins.
Plurality vs. Majority
Majority- more than half of the votes
Plurality- the most first place votes

The Majority Criterion

If a choice receives a majority of the first-
place votes in an election, then that choice
should be the winner of the election.
Plurality method satisfies the majority criterion-

The marching band is deciding which bowl to play at
(Rose, Fiesta, Hula, Orange, Sugar). Here is the preference schedule summarizing the ballots.

Preference Schedule: Which Bowl?			
Number of voters	49	48	3
First choice	R	H	F
Second choice	H	S	H
Third choice	F	O	S
Fourth choice	O	F	O
Fifth choice	S	R	R

Condorcet Criterion

If there is a choice that in a head-to-head comparison is preferred by the voters over every other choice, then that choice should be the winner of the election.

Head-to-head comparison: Compare two candidates, then another two, until all candidates have been considered. Is there one candidate that is always preferred?

Preference Schedule: Which Bowl?			
Number of voters	49	48	3
First choice	R	H	F
Second choice	H	S	H
Third choice	F	O	S
Fourth choice	O	F	O
Fifth choice	S	R	R

Call the Hula Bowl a Compromise Candidate

Insincere Voting- problem with plurality voting

Borda Count

- looks at all positions, not just first place
- compromise candidate
- preference schedule

The Borda Count works by assigning points for places. Four places:
first place gets 4 points, second place gets 3 points, third place gets 2 points and fourth place gets 1 point.

Add up all the points for each candidate and the winner is the candidate with the most points.

Example: Favorite Fruit

Ballot									
$1{ }^{\text {st }}$	M	$1{ }^{\text {st }}$	B	$1^{\text {st }}$	M	$1^{\text {st }}$	M	$1^{\text {st }}$	B
$2^{\text {nd }}$	P	$2^{\text {nd }}$	M	$2^{\text {nd }}$	P	$2^{\text {nd }}$	A	$2^{\text {nd }}$	M
$3{ }^{\text {rd }}$	A	$3^{\text {rd }}$	A	$3{ }^{\text {rd }}$	A	$3^{\text {rd }}$	P	$3{ }^{\text {rd }}$	A
$4^{\text {th }}$	B	$4^{\text {th }}$	P	$4^{\text {th }}$	B	$4^{\text {th }}$	B	$4^{\text {th }}$	P

Let's add points for each fruit: Remember, 4 points for each first place vote, 3 for each second place, etc.

Mango: $4+3+4+4+3=18$ points
Banana: $1+4+1+1+4=11$ points
Apple: $2+2+2+3+2=11$ points
Pear: $3+1+3+2+1=10$ points
Winner is Mango.

How do we do the Borda Count if we only have a preference schedule?

Use (\#voters) \times (points for the position) for each column and then add.

Use the Borda Count Method to determine the winner of the MAS Election.

Preference Schedule: MAS Election					
Number of voters	14	10	8	4	1
First choice	A	C	D	B	C
Second choice	B	B	C	D	D
Third choice	C	D	B	C	B
Fourth choice	D	A	A	A	A

A: $14 \times 4+10 \times 1+8 \times 1+4 \times 1+1 \times 1=79$
B: $14 \times 3+10 \times 3+8 \times 2+4 \times 4+1 \times 2=106$
C: $14 \times 2+10 \times 4+8 \times 3+4 \times 2+1 \times 4=104$
D: $14 \times 1+10 \times 2+8 \times 4+4 \times 3+1 \times 3=81$
Boris is winner!

School Principal Example
A school needs to elect a new principal.
Candidates: Mrs. Amaro, Mr. Burr, Mr.
Castro, and Ms. Dunbar
Preference Schedule: Principal

Number of voters	6	2	3
First choice	A	B	C
Second choice	B	C	D
Third choice	C	D	B
Fourth choice	D	A	A

Try it: Use the Borda Count to find the winner.

B, or Mr. Burr is winner.

Summary

\uparrow Two Ballot Types, Top Choice and Preference -Preference Schedule summarizes the ballots -Arrow's Impossibility Theorem: It is impossible to fairly and democratically pick a winner.
-Plurality Method for chosing winner picks the candidate with the most first place votes.
-The Plurality Method satisfies the Majority Criterion.
-The Plurality Method can violate the Condorcet Criterion.

- Insincere Voting
\diamond Borda Count- In an election with N candidates we give 1 point for last place, 2 points for second from last place,..., and N points for first place.

The choice with the highest total wins.
\diamond Can violate the Majority Criterion
\diamond Can violate the Condorcet Criterion
\diamond Finds the best compromise candidate.
\diamond Used for the Heisman Award, American and National Baseball MVP, Country Music Vocalist of the Year

