Introduction to Voting Theory

Arrow's Impossibility Theorem

A method for determining election results that is democratic and always fair is a mathematical impossibility.

 $\mathbf{Ballots}\text{-}$ how individual voters express opinions

* Top Choice Ballot- most familar, voter picks first choice only
* Preference Ballot- not the most common type, choices listed in order of preference
Example:
List the following fruits in order of preference:

Apple, Banana, Mango, Pear:
Mango
Banana
Apple
Pear

Two important voting properties to use with Preference Ballots:

Transitivity of individual preferences if a voter prefers A to B and B to C, then the voter prefers A to C.

Elimination of a Candidate

If a voter ranks candidates A, B, C, D and candidate B drops out of the election, then the new rank is A, C, D. (i.e. relative preferences are preserved)

Using preference ballots

Some sample ballots:

Bal	lot	Ballot		Ballot		Ballot			Ballot		
1^{st}	М		1^{st}	В	$1^{\rm st}$	Μ	1^{st}	Μ		1^{st}	В
2^{nd}	Р		2 nd	М	2^{nd}	Ρ	2^{nd}	А		2 nd	М
3 rd	A		3 rd	Α	3 rd	А	3 rd	Ρ		3 rd	А
$4^{\rm th}$	В		$4^{\rm th}$	Ρ	4^{th}	В	$4^{\rm th}$	В		4^{th}	Ρ

Make a Preference Schedule

Step 1: combine identical ballots

Step 2: Organize results in a table

Preference Schedule: Favorite Fruit

Number of voters	2	2	1
First choice	\mathbf{M}	В	\mathbf{M}
Second choice	Р	\mathbf{M}	\mathbf{A}
Third choice	Α	A	Р
Fourth choice	В	Р	В

Consider another election: The Math Appreciation Society is voting for president. The candidates are Alisha, Boris, Carmen, and Dave. 37 club members vote, using a preference ballot. Summary of the 37 ballots:

Preference Schedule: MAS Election

Number of voters	14	10	8	4	1
First choice	Α	\mathbf{C}	D	В	\mathbf{C}
Second choice	В	В	\mathbf{C}	D	D
Third choice	\mathbf{C}	D	В	\mathbf{C}	В
Fourth choice	D	A	A	A	\mathbf{A}

Plurality Method

Candidate with the most first place votes wins.

Plurality vs. Majority

Majority- more than half of the votes

Plurality- the most first place votes

The Majority Criterion

If a choice receives a majority of the first-

place votes in an election, then that choice

should be the winner of the election. Plurality method satisfies the majority criterion-

The marching band is deciding which bowl to play at (Rose, Fiesta, Hula, Orange, Sugar). Here is the preference schedule summarizing the ballots.

Number of voters	49 48 3	
First choice	RHF	
Second choice	нѕн	
Third choice	FOS	
Fourth choice	OFO	
Fifth choice	SRR	

Preference Schedule: Which Bowl?

Condorcet Criterion

If there is a choice that in a head-to-head comparison is preferred by the voters over every other choice, then that choice should be the winner of the election.

Head-to-head comparison: Compare two candidates, then another two, until all candidates have been considered. Is there one candidate that is always preferred?

Number of voters	49	48	3
First choice	\mathbf{R}	Η	\mathbf{F}
Second choice	\mathbf{H}	\mathbf{S}	Н
Third choice	\mathbf{F}	0	\mathbf{S}
Fourth choice	0	\mathbf{F}	0
Fifth choice	\mathbf{S}	\mathbf{R}	\mathbf{R}

Preference Schedule: Which Bowl?

Call the Hula Bowl a Compromise Candidate

Insincere Voting- problem with plurality voting

Borda Count

- ✦ looks at all positions, not just first place
- ♦ compromise candidate
- ♦ preference schedule

The Borda Count works by assigning points for

places. Four places:

first place gets 4 points,

second place gets 3 points,

third place gets 2 points and

fourth place gets 1 point.

Add up all the points for each candidate and the winner is the candidate with the most points.

Example: Favorite Fruit

Bal	lot	ot Ballot		Ballot			Ballot			Ballot		
1^{st}	Μ		1^{st}	В	1^{st}	Μ		1^{st}	Μ		1^{st}	В
2^{nd}	Р		2 nd	М	2 nd	Р		2 nd	Α		2 nd	М
3 rd	Α		3 rd	Α	3 rd	A		3 rd	Ρ		3 rd	А
4^{th}	В		4^{th}	Р	4^{th}	В		$4^{\rm th}$	В		$4^{\rm th}$	Ρ

Let's add points for each fruit: Remember, 4 points for each first place vote, 3 for each second place, etc.

Mango: 4 + 3 + 4 + 4 + 3 = 18 points

Banana: 1 + 4 + 1 + 1 + 4 = 11 points

Apple: 2 + 2 + 2 + 3 + 2 = 11 points

Pear: 3 + 1 + 3 + 2 + 1 = 10 points

Winner is Mango.

How do we do the Borda Count if we only have a preference schedule?

Use (#voters) \times (points for the position) for each column and then add.

Use the Borda Count Method to determine the winner of the MAS Election.

Preference Schedule: MAS Election

Number of voters	14	10	8	4	1
First choice	Α	С	D	В	С
Second choice	В	В	\mathbf{C}	D	D
Third choice	\mathbf{C}	D	В	С	В
Fourth choice	D	A	A	A	A

A: $14 \times 4 + 10 \times 1 + 8 \times 1 + 4 \times 1 + 1 \times 1 = 79$ B: $14 \times 3 + 10 \times 3 + 8 \times 2 + 4 \times 4 + 1 \times 2 = 106$ C: $14 \times 2 + 10 \times 4 + 8 \times 3 + 4 \times 2 + 1 \times 4 = 104$ D: $14 \times 1 + 10 \times 2 + 8 \times 4 + 4 \times 3 + 1 \times 3 = 81$ Boris is winner!

School Principal Example

A school needs to elect a new principal.

Candidates: Mrs. Amaro, Mr. Burr, Mr.

Castro, and Ms. Dunbar

Preference	Schedule:	Principal
------------	-----------	-----------

Number of voters	6	2	3
First choice	Α	В	\mathbf{C}
Second choice	В	\mathbf{C}	D
Third choice	\mathbf{C}	D	В
Fourth choice	D	A	A

Try it: Use the Borda Count to find the winner.

B, or Mr. Burr is winner.

Summary

Two Ballot Types, Top Choice and Preference
Preference Schedule summarizes the ballots
Arrow's Impossibility Theorem: It is impossible to fairly and democratically pick a winner.
Plurality Method for chosing winner picks the candidate with the most first place votes.
The Plurality Method satisfies the Majority Criterion.

♦The Plurality Method can violate the Condorcet Criterion.

◆Insincere Voting

 \diamond Borda Count- In an election with N candidates we give 1 point for last place, 2 points for second from last place,..., and N points for first place.

The choice with the highest total wins.

 \diamondsuit Can violate the Majority Criterion

 \diamond Can violate the Condorcet Criterion

 \diamond Finds the best compromise candidate.

 \diamond Used for the Heisman Award, American and

National Baseball MVP, Country Music Vocalist of the Year