Math155: Calculus for Biological Scientists
A model of the heart

David Eklund

Colorado State University

September 9, 2012
In this lecture we will study the dynamics of heartbeats.

Heartbeats are regulated by two collections of cells in the heart:
1. the **SA node** (sinoatrial node)
2. the **AV node** (atrioventricular node).
A model of the heart

In this lecture we will study the dynamics of heartbeats.

Heartbeats are regulated by two collections of cells in the heart:
1. the **SA node** (sinoatrial node)
2. the **AV node** (atrioventricular node).

Picture by J. Heuser.
A model of the heart

Heartbeats are regulated by the \textbf{SA node} and the \textbf{AV node}.
A model of the heart

Heartbeats are regulated by the **SA node** and the **AV node**. The SA node regularly sends electric signals to the AV node, which in turn tells the heart to beat if conditions are suitable.
A model of the heart

Heartbeats are regulated by the **SA node** and the **AV node**. The SA node regularly sends electric signals to the AV node, which in turn tells the heart to beat if conditions are suitable.

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is too high, there is no heartbeat. Electric potential is measured in volts.
Heartbeats are regulated by the **SA node** and the **AV node**. The SA node regularly sends electric signals to the AV node, which in turn tells the heart to beat if conditions are suitable.

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is too high, there is no heartbeat. Electric potential is measured in volts.

If the electric potential is however below a certain threshold value, denoted W, then the AV node tells the heart to beat and increases the potential by a certain amount, denoted u. We will assume $W > 0$.

Note: W is called V_c in the book.
A model of the heart

Let V_t denote the potential in the AV node just after a the AV node has responded to a signal from the SA node. Let τ denote the time between two signals from the SA node. Then τ is also the time interval between measurements of the potential V_t.
Let V_t denote the potential in the AV node just after a signal from the SA node has been received. Let τ denote the time between two signals from the SA node. Then τ is also the time interval between measurements of the potential V_t.

During the time between two signals from the SA node, the potential in the AV node decays exponentially at a rate α, $\alpha > 0$.

A model of the heart

Let V_t denote the potential in the AV node just after a signal from the SA node. Let τ denote the time between two signals from the SA node. Then τ is also the time interval between measurements of the potential V_t.

During the time between two signals from the SA node, the potential in the AV node decays exponentially at a rate α, $\alpha > 0$.

This means that the potential just before the next signal from the SA node is

$$e^{-\alpha \tau} V_t$$
A model of the heart

Let V_t denote the potential in the AV node just after a the AV node has responded to a signal from the SA node. Let τ denote the time between two signals from the SA node. Then τ is also the time interval between measurements of the potential V_t.

During the time between two signals from the SA node, the potential in the AV node decays exponentially at a rate α, $\alpha > 0$.

This means that the potential just before the next signal from the SA node is

$$e^{-\alpha \tau} V_t$$

Let $c = e^{-\alpha \tau}$ and note that $0 < c < 1$. Then $e^{-\alpha \tau} V_t = cV_t$.
Recall that:

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is higher than W, then there is no heartbeat.
Recall that:

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is higher than W, then there is no heartbeat.

But if the electric potential is below W, then the AV node tells the heart to beat and increases the potential by u.
Recall that:

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is higher than W, then there is no heartbeat.

But if the electric potential is below W, then the AV node tells the heart to beat and increases the potential by u.

The potential just before the next signal from the SA node is equal to cV_t.
A model of the heart

Recall that:

Whether conditions are suitable for a heartbeat is determined by the electric potential of the AV node: if the potential is higher than W, then there is no heartbeat.

But if the electric potential is below W, then the AV node tells the heart to beat and increases the potential by u.

The potential just before the next signal from the SA node is equal to cV_t.

Therefore:

$$V_{t+1} = cV_t \quad \text{if} \quad cV_t > W$$
$$V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W$$
A model of the heart

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]
A model of the heart

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

- If \(cV_t > W \) then the potential is too high and there is no heartbeat. The potential value \(cV_t \) is not increased by \(u \).
A model of the heart

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

• If \(cV_t > W \) then the potential is too high and there is no heartbeat. The potential value \(cV_t \) is not increased by \(u \).

• But if \(cV_t \leq W \) then there is a heartbeat and the potential is increased by \(u \).
A model of the heart

The updating function of the dynamical system of the heart is

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

For example, we could have \(c = 0.4, \ u = 1 \) and \(W = 1 \).
The updating function of the dynamical system of the heart is

\[V_{t+1} = cV_t \quad \text{if } cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if } cV_t \leq W \]

For example, we could have \(c = 0.4, u = 1 \) and \(W = 1 \).

For these values of the parameters, let us graph the updating function.
The updating function of the dynamical system of the heart is

\begin{align*}
V_{t+1} &= cV_t \quad \text{if} \quad cV_t > W \\
V_{t+1} &= cV_t + u \quad \text{if} \quad cV_t \leq W
\end{align*}

For example, we could have \(c = 0.4 \), \(u = 1 \) and \(W = 1 \).

For these values of the parameters, let us graph the updating function. Before drawing the graph we will take a look at the updating function. First we plug in \(c = 0.4 \) and \(u = W = 1 \):

\begin{align*}
V_{t+1} &= 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \\
V_{t+1} &= 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1
\end{align*}
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1 \]
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1 \]

Divide \(0.4V_t > 1 \) and \(0.4V_t \leq 1 \) on both sides by 0.4:
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1 \]

Divide \(0.4V_t > 1 \) and \(0.4V_t \leq 1 \) on both sides by 0.4:

- \(0.4V_t > 1 \) becomes \(V_t > 1/0.4 \)
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1 \]

Divide 0.4\(V_t\) > 1 and 0.4\(V_t\) ≤ 1 on both sides by 0.4:

- 0.4\(V_t\) > 1 becomes \(V_t > 1/0.4\)
- 0.4\(V_t\) ≤ 1 becomes \(V_t \leq 1/0.4\)
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad 0.4V_t > 1 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad 0.4V_t \leq 1 \]

Divide \(0.4V_t > 1\) and \(0.4V_t \leq 1\) on both sides by 0.4:

- \(0.4V_t > 1\) becomes \(V_t > 1/0.4\)
- \(0.4V_t \leq 1\) becomes \(V_t \leq 1/0.4\)

Since \(1/0.4 = 2.5\) we get:

- \(0.4V_t > 1\) becomes \(V_t > 2.5\)
- \(0.4V_t \leq 1\) becomes \(V_t \leq 2.5\)
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad V_t > 2.5 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad V_t \leq 2.5 \]
The graph of the updating function

\[V_{t+1} = 0.4V_t \quad \text{if} \quad V_t > 2.5 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad V_t \leq 2.5 \]
The graph of the updating function and the diagonal

\[V_{t+1} = 0.4V_t \quad \text{if} \quad V_t > 2.5 \]
\[V_{t+1} = 0.4V_t + 1 \quad \text{if} \quad V_t \leq 2.5 \]
An equilibrium

In this case there is an equilibrium (about 1.7).

\[u = 1, \quad c = 0.4, \quad W = 1 \]

updating function

diagonal
More on equilibria

At an equilibrium the heart will beat steadily and every signal sent by the SA node results in a heartbeat.
More on equilibria

At an equilibrium the heart will beat steadily and every signal sent by the SA node results in a heartbeat.

Interestingly, whether or not there exists an equilibrium depends on the parameters c, u and W!
More on equilibria

At an equilibrium the heart will beat steadily and every signal sent by the SA node results in a heartbeat.

Interestingly, whether or not there exists an equilibrium depends on the parameters c, u and W!

For example, if $c = 0.6$, $u = 1$ and $W = 1$, then there is no equilibrium.
No equilibria

If $c = 0.6$ and $u = W = 1$ then there is no equilibrium.
Computing equilibria

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

An equilibrium \(V^*_t \) must satisfy \(cV^*_t \leq W \) since otherwise the heart would not beat after the potential has fallen from \(V^*_t \) to \(cV^*_t \). Therefore, that \(V^*_t \) is an equilibrium means that \(V^*_t = cV^*_t + u \) and \(cV^*_t \leq W \).

If there exists a solution, then it is given by \(V^*_t = u \) and \(cV^*_t \leq W \).
Computing equilibria

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

An equilibrium \(V^* \) must satisfy \(cV^* \leq W \) since otherwise the heart would not beat after the potential has fallen from \(V^* \) to \(cV^* \).
Computing equilibria

\[\begin{align*}
V_{t+1} &= cV_t \quad \text{if} \quad cV_t > W \\
V_{t+1} &= cV_t + u \quad \text{if} \quad cV_t \leq W
\end{align*} \]

An equilibrium \(V^* \) must satisfy \(cV^* \leq W \) since otherwise the heart would not beat after the potential has fallen from \(V^* \) to \(cV^* \).

Therefore, that \(V^* \) is an equilibrium means that

\[V^* = cV^* + u \quad \text{and} \quad cV^* \leq W \]
Computing equilibria

\[V_{t+1} = cV_t \quad \text{if} \quad cV_t > W \]
\[V_{t+1} = cV_t + u \quad \text{if} \quad cV_t \leq W \]

An equilibrium \(V^* \) must satisfy \(cV^* \leq W \) since otherwise the heart would not beat after the potential has fallen from \(V^* \) to \(cV^* \).

Therefore, that \(V^* \) is an equilibrium means that

\[V^* = cV^* + u \quad \text{and} \quad cV^* \leq W \]

If there exists a solution, then it is given by

\[V^* = \frac{u}{1 - c} \quad \text{and} \quad cV^* \leq W \]
Example (A heart beating with every signal)

Consider again the case $c = 0.4$, $u = 1$ and $W = 1$. The graph from above indicated that there is an equilibrium in this case.
A steady heartbeat

Example (A heart beating with every signal)

Consider again the case $c = 0.4$, $u = 1$ and $W = 1$. The graph from above indicated that there is an equilibrium in this case.

An equilibrium V^* must satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.4} \quad \text{and} \quad cV^* \leq W$$
Example (A heart beating with every signal)

Consider again the case $c = 0.4$, $u = 1$ and $W = 1$. The graph from above indicated that there is an equilibrium in this case.

An equilibrium V^* must satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.4} \quad \text{and} \quad cV^* \leq W$$

Thus $V^* = 1/0.6 = 1.666...$
Example (A heart beating with every signal)

Consider again the case $c = 0.4$, $u = 1$ and $W = 1$. The graph from above indicated that there is an equilibrium in this case.

An equilibrium V^* must satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.4} \quad \text{and} \quad cV^* \leq W$$

Thus $V^* = 1/0.6 = 1.666\ldots$.

But we have to check that $cV^* \leq W$, that is

$$0.4 \cdot (1/0.6) \leq 1$$
Example (A heart beating with every signal)

Consider again the case $c = 0.4$, $u = 1$ and $W = 1$. The graph from above indicated that there is an equilibrium in this case.

An equilibrium V^* must satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.4} \quad \text{and} \quad cV^* \leq W$$

Thus $V^* = 1/0.6 = 1.666...$.

But we have to check that $cV^* \leq W$, that is

$$0.4 \cdot (1/0.6) \leq 1$$

But $0.4 \cdot (1/0.6) = 0.4/0.6 = 2/3$ and hence the inequality is fulfilled!
A steady heartbeat

Example (A heart beating with every signal)

We conclude that there really is an equilibrium $V^* = 1/0.6$.

Note that $V^* = 1/0.6 = 10/6 = 5/3$.

What happens in this example if we are at the equilibrium potential? Let us assume that $V_t = V^* = 5/3$. The AV node has just responded to a signal from the SA node. Recall that $c = 0.4$. The next event is that the potential drops to $0.4V^* = 0.4 \cdot (10/6) = (0.4 \cdot 10)/6 = 4/6 = 2/3$.

When the next signal arrives from the SA node, the AV node checks whether the potential ($2/3$ volts) has dropped below the threshold W (1 volt). It has, and therefore the heart beats.
A steady heartbeat

Example (A heart beating with every signal)

We conclude that there really is an equilibrium $V^* = 1/0.6$.

Note that $V^* = 1/0.6 = 10/6 = 5/3$.
Example (A heart beating with every signal)

We conclude that there really is an equilibrium \(V^* = 1/0.6 \).

Note that \(V^* = 1/0.6 = 10/6 = 5/3 \).

What happens in this example if we are at the equilibrium potential?
A steady heartbeat

Example (A heart beating with every signal)

We conclude that there really is an equilibrium $V^* = 1/0.6$.

Note that $V^* = 1/0.6 = 10/6 = 5/3$.

What happens in this example if we are at the equilibrium potential?

Let us assume that $V_t = V^* = 5/3$. The AV node has just responded to a signal from the SA node.
A steady heartbeat

Example (A heart beating with every signal)

We conclude that there really is an equilibrium $V^* = 1/0.6$.

Note that $V^* = 1/0.6 = 10/6 = 5/3$.

What happens in this example if we are at the equilibrium potential?

Let us assume that $V_t = V^* = 5/3$. The AV node has just responded to a signal from the SA node.

Recall that $c = 0.4$. The next event is that the potential drops to $0.4V^* = 0.4 \cdot (10/6) = (0.4 \cdot 10)/6 = 4/6 = 2/3$.
A steady heartbeat

Example (A heart beating with every signal)

We conclude that there really is an equilibrium \(V^* = 1/0.6 \).

Note that \(V^* = 1/0.6 = 10/6 = 5/3 \).

What happens in this example if we are at the equilibrium potential?

Let us assume that \(V_t = V^* = 5/3 \). The AV node has just responded to a signal from the SA node.

Recall that \(c = 0.4 \). The next event is that the potential drops to \(0.4V^* = 0.4 \cdot (10/6) = (0.4 \cdot 10)/6 = 4/6 = 2/3 \).

When the next signal arrives from the SA node, the AV node checks whether the potential (2/3 volts) has dropped below the threshold \(W \) (1 volt). It has, and therefore the heart beats.
Example (A heart beating with every signal)

Next, the potential is increased by u (1 volt) to

$$\frac{2}{3} + 1 = \frac{2}{3} + \frac{3}{3} = \frac{5}{3} \text{ volts}.$$

We are back exactly at the equilibrium potential V^* again!
Example (A heart beating with every signal)

Next, the potential is increased by u (1 volt) to

$$\frac{2}{3} + 1 = \frac{2}{3} + \frac{3}{3} = \frac{5}{3} \text{ volts.}$$

We are back exactly at the equilibrium potential V^* again!

The procedure will start over and the heart beats steadily. This is what it means to be at an equilibrium.
Not a steady heartbeat

Example (A heart failing to beat with some signals)

Now let us look at the example $c = 0.6$ and $u = W = 1$. The graph above suggests that there is no equilibrium.
Example (A heart failing to beat with some signals)

Now let us look at the example \(c = 0.6 \) and \(u = W = 1 \). The graph above suggests that there is no equilibrium.

An equilibrium \(V^* \) has to satisfy \(V^* = \frac{u}{1 - c} \) and \(cV^* \leq W \), that is

\[
V^* = \frac{1}{1 - 0.6} \quad \text{and} \quad 0.6V^* \leq 1
\]

We conclude that there is no equilibrium in this case.
Not a steady heartbeat

Example (A heart failing to beat with some signals)

Now let us look at the example $c = 0.6$ and $u = W = 1$. The graph above suggests that there is no equilibrium.

An equilibrium V^* has to satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.6} \quad \text{and} \quad 0.6V^* \leq 1$$

This gives $V^* = 1/0.4 = 2.5$.
Example (A heart failing to beat with some signals)

Now let us look at the example $c = 0.6$ and $u = W = 1$. The graph above suggests that there is no equilibrium.

An equilibrium V^* has to satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.6} \quad \text{and} \quad 0.6V^* \leq 1$$

This gives $V^* = 1/0.4 = 2.5$.

But $0.6V^* = 0.6 \cdot 2.5 = 1.5$ which is bigger than 1, and the inequality is not satisfied!
Example (A heart failing to beat with some signals)

Now let us look at the example $c = 0.6$ and $u = W = 1$. The graph above suggests that there is no equilibrium.

An equilibrium V^* has to satisfy $V^* = u/(1 - c)$ and $cV^* \leq W$, that is

$$V^* = \frac{1}{1 - 0.6} \quad \text{and} \quad 0.6V^* \leq 1$$

This gives $V^* = 1/0.4 = 2.5$.

But $0.6V^* = 0.6 \cdot 2.5 = 1.5$ which is bigger than 1, and the inequality is not satisfied!

We conclude that there is no equilibrium in this case.
Example (A heart failing to beat with some signals)

What happens in this heart if, say, $V_t = 2.5$? The AV node has just responded to a signal from the SA node.
Example (A heart failing to beat with some signals)

What happens in this heart if, say, \(V_t = 2.5 \)? The AV node has just responded to a signal from the SA node.

Next, the potential falls to \(cV_t = 0.6 \cdot 2.5 = 1.5 \) until the next signal from the SA node. But \(W = 1 < 1.5 \) and thus the potential is too high and the heart does not beat.
Example (A heart failing to beat with some signals)

What happens in this heart if, say, $V_t = 2.5$? The AV node has just responded to a signal from the SA node.

Next, the potential falls to $cV_t = 0.6 \cdot 2.5 = 1.5$ until the next signal from the SA node. But $W = 1 < 1.5$ and thus the potential is too high and the heart does not beat.

Next, the potential falls to $0.6 \cdot 1.5 = 0.9$ volts until the next signal from the SA node. Now the potential is smaller than 1 and the heart beats! After the heartbeat the potential is raised by 1.0 volts.
Not a steady heartbeat

Example (A heart failing to beat with some signals)

What happens in this heart if, say, $V_t = 2.5$? The AV node has just responded to a signal from the SA node.

Next, the potential falls to $cV_t = 0.6 \cdot 2.5 = 1.5$ until the next signal from the SA node. But $W = 1 < 1.5$ and thus the potential is too high and the heart does not beat.

Next, the potential falls to $0.6 \cdot 1.5 = 0.9$ volts until the next signal from the SA node. Now the potential is smaller than 1 and the heart beats! After the heartbeat the potential is raised by 1.0 volts.

We see that in this case the heart does not beat with every signal from the SA node.
On existence of equilibria

<table>
<thead>
<tr>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>We have seen two examples where $u = W = 1$ in both examples but in the first $c = 0.4$ and in the second $c = 0.6$.</td>
</tr>
</tbody>
</table>

Recall that $c = e^{-\alpha \tau}$ where τ is the time between signals from the SA node and $0 < \alpha$ is a constant. As τ gets smaller, c gets bigger. This can lead to heart beats being skipped. That is, if the signals from the SA node come too close to-gether, it is trying to make the heart beat too fast and some beats may be skipped.
On existence of equilibria

Remark

We have seen two examples where \(u = W = 1 \) in both examples but in the first \(c = 0.4 \) and in the second \(c = 0.6 \).

In the first example the heart beats with every signal from the SA node (there was an equilibrium) and in the second example this was not the case.
On existence of equilibria

Remark

We have seen two examples where $u = W = 1$ in both examples but in the first $c = 0.4$ and in the second $c = 0.6$.

In the first example the heart beats with every signal from the SA node (there was an equilibrium) and in the second example this was not the case.

Recall that $c = e^{-\alpha \tau}$ where τ is the time between signals from the SA node and $0 < \alpha$ is a constant.
On existence of equilibria

Remark

We have seen two examples where $u = W = 1$ in both examples but in the first $c = 0.4$ and in the second $c = 0.6$.

In the first example the heart beats with every signal from the SA node (there was an equilibrium) and in the second example this was not the case.

Recall that $c = e^{-\alpha \tau}$ where τ is the time between signals from the SA node and $0 < \alpha$ is a constant.

As τ gets smaller, c gets bigger. This can lead to heart beats being skipped.
On existence of equilibria

Remark

We have seen two examples where \(u = W = 1 \) in both examples but in the first \(c = 0.4 \) and in the second \(c = 0.6 \).

In the first example the heart beats with every signal from the SA node (there was an equilibrium) and in the second example this was not the case.

Recall that \(c = e^{-\alpha \tau} \) where \(\tau \) is the time between signals from the SA node and \(0 < \alpha \) is a constant.

As \(\tau \) gets smaller, \(c \) gets bigger. This can lead to heart beats being skipped.

That is, if the signals from the SA node come too close together, it is trying to make the heart beat too fast and some beats may be skipped.
AV block

We will now study a condition called **2:1 AV block**. Under this condition, the heart does not beat with every signal, in fact it beats only with every other signal.
We will now study a condition called 2:1 AV block. Under this condition, the heart does not beat with every signal, in fact it beats only with every other signal.

Here is a diagram illustrating what happens during 2:1 AV block:

\[V_t \xrightarrow{\text{decay}} cV_t \xrightarrow{\text{signal ignored}} cV_t \xrightarrow{\text{decay}} c^2V_t \xrightarrow{\text{signal obeyed}} c^2V_t + u \]
We will now study a condition called **2:1 AV block**. Under this condition, the heart does not beat with every signal, in fact it beats only with every other signal.

Here is a diagram illustrating what happens during 2:1 AV block:

\[
\begin{align*}
V_t & \xrightarrow{\text{decay}} cV_t \\
& \quad \xrightarrow{\text{signal ignored}} cV_t \\
& \quad \xrightarrow{\text{decay}} c^2V_t \\
& \quad \xrightarrow{\text{signal obeyed}} c^2V_t + u
\end{align*}
\]

The signal is obeyed after two cycles and then the potential should be equal to \(V_t\) again:

\[V_t = c^2V_t + u\]
AV block

Let \overline{V} denote a potential where 2:1 AV block arises. Here is the diagram again:

\[\overline{V} \xrightarrow{\text{decay}} c\overline{V} \xrightarrow{\text{signal ignored}} c\overline{V} \xrightarrow{\text{decay}} c^2\overline{V} \xrightarrow{\text{signal obeyed}} c^2\overline{V} + u \]
Let \overline{V} denote a potential where 2:1 AV block arises. Here is the diagram again:

$\overline{V} \xrightarrow{\text{decay}} c\overline{V} \xrightarrow{\text{signal ignored}} c\overline{V} \xrightarrow{\text{decay}} c^2\overline{V} \xrightarrow{\text{signal obeyed}} c^2\overline{V} + u$

Since the first signal is ignored we have that $c\overline{V} > W$. But the second signal is obeyed and therefore $c^2\overline{V} \leq W$.
AV block

Let \overline{V} denote a potential where 2:1 AV block arises. Here is the diagram again:

\overline{V} decay \rightarrow $c\overline{V}$ signal ignored \rightarrow $c\overline{V}$ decay \rightarrow $c^2\overline{V}$ signal obeyed \rightarrow $c^2\overline{V} + u$

Since the first signal is ignored we have that $c\overline{V} > W$. But the second signal is obeyed and therefore $c^2\overline{V} \leq W$.

The conditions on \overline{V} are:

$\overline{V} = c^2\overline{V} + u$ \hspace{1cm} $c\overline{V} > W$ \hspace{1cm} $c^2\overline{V} \leq W$
Let \overline{V} denote a potential where 2:1 AV block arises. Here is the diagram again:

\[\overline{V} \xrightarrow{\text{decay}} c\overline{V} \xrightarrow{\text{signal ignored}} c\overline{V} \xrightarrow{\text{decay}} c^2\overline{V} \xrightarrow{\text{signal obeyed}} c^2\overline{V} + u \]

Since the first signal is ignored we have that $c\overline{V} > W$. But the second signal is obeyed and therefore $c^2\overline{V} \leq W$.

The conditions on \overline{V} are:

\[\overline{V} = c^2\overline{V} + u \quad c\overline{V} > W \quad c^2\overline{V} \leq W \]

Solving for \overline{V} we get:

\[\overline{V} = \frac{u}{1 - c^2} \quad c\overline{V} > W \quad c^2\overline{V} \leq W \]
Let \overline{V} denote a potential where 2:1 AV block arises. Here is the diagram again:

$$
\overline{V} \xrightarrow{\text{decay}} c\overline{V} \quad \text{signal ignored} \quad \overline{V} \xrightarrow{\text{decay}} c^2\overline{V} \quad \text{signal obeyed} \quad c^2\overline{V} + u
$$

Since the first signal is ignored we have that $c\overline{V} > W$. But the second signal is obeyed and therefore $c^2\overline{V} \leq W$.

The conditions on \overline{V} are:

$$
\overline{V} = c^2\overline{V} + u \quad c\overline{V} > W \quad c^2\overline{V} \leq W
$$

Solving for \overline{V} we get:

$$
\overline{V} = \frac{u}{1 - c^2} \quad c\overline{V} > W \quad c^2\overline{V} \leq W
$$

The inequalities may or may not be fulfilled, depending on the parameters c, u and W.
An example of 2:1 AV block

Now let us look at a particular example where 2:1 AV block occurs: \(c = \frac{2}{3} \) and \(u = W = 1 \).
An example of 2:1 AV block

Now let us look at a particular example where 2:1 AV block occurs: \(c = \frac{2}{3} \) and \(u = W = 1 \).

For \(\bar{V} \) we get

\[
\bar{V} = \frac{u}{1 - c^2} = \frac{1}{1 - (\frac{2}{3})^2} = \frac{1}{1 - \frac{4}{9}} = \frac{9}{9 - 4} = \frac{9}{5} = 1.8
\]
An example of 2:1 AV block

Now let us look at a particular example where 2:1 AV block occurs: \(c = 2/3 \) and \(u = W = 1 \).

For \(\overline{V} \) we get

\[
\overline{V} = \frac{u}{1 - c^2} = \frac{1}{1 - (2/3)^2} = \frac{1}{1 - 4/9} = \frac{9}{9 - 4} = \frac{9}{5} = 1.8
\]

We have to check the inequalities \(c\overline{V} > W \) and \(c^2\overline{V} \leq W \):

\[
\frac{2}{3} \cdot \frac{9}{5} = \frac{6}{5} = 1.2 > 1 \quad \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{9}{5} = \frac{4}{5} = 0.8 < 1
\]
An example of 2:1 AV block

Now let us look at a particular example where 2:1 AV block occurs: \(c = 2/3 \) and \(u = W = 1 \).

For \(\overline{V} \) we get

\[
\overline{V} = \frac{u}{1 - c^2} = \frac{1}{1 - (2/3)^2} = \frac{1}{1 - 4/9} = \frac{9}{9 - 4} = \frac{9}{5} = 1.8
\]

We have to check the inequalities \(c\overline{V} > W \) and \(c^2\overline{V} \leq W \):

\[
\frac{2}{3} \cdot \frac{9}{5} = \frac{6}{5} = 1.2 > 1 \quad \quad \quad \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{9}{5} = \frac{4}{5} = 0.8 < 1
\]

Here is the diagram from above:

\[
1.8 \xrightarrow{\text{decay}} c \cdot 1.8 = 1.2 \xrightarrow{\text{signal ignored}} 1.2 \xrightarrow{\text{decay}} c \cdot 1.2 = 0.8
\]

\[
\text{signal obeyed} \rightarrow 0.8 + u = 0.8 + 1 = 1.8
\]
AV block

The graph of the updating function.

\[u = 1 \]
\[W = 1 \]
\[c = 2/3 \]
AV block

Cobweb starting at 1.2 volts.

\[u = 1 \]
\[w = 1 \]
\[c = \frac{2}{3} \]
AV block

Cobweb starting at 1.2 volts.

\[u=1 \]
\[W=1 \]
\[c=2/3 \]
AV block

Cobweb starting at 1.2 volts.

\[u = 1 \]
\[W = 1 \]
\[c = 2/3 \]
AV block

Cobweb starting at 1.2 volts.

\[u = 1 \]
\[W = 1 \]
\[c = 2/3 \]

Graph showing the cobweb with initial conditions and parameters.
AV block

Cobweb starting at 1.2 volts.

\[u=1 \]
\[W=1 \]
\[c=2/3 \]
The potential oscillates between 1.2 and 1.8.
AV block

Between signals the potential decays. Every other signal is ignored and the decay continues until the next signal.
AV block

Between signals the potential decays. Every other signal is ignored and the decay continues until the next signal.
The Wenckebach phenomenon

We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:
We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:

1. Normal beating for a while.
We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:

1. Normal beating for a while.
2. The heart skips a beat.
The Wenckebach phenomenon

We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:

1. Normal beating for a while.
2. The heart skips a beat.
3. Normal beating for a while.
We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:

1. Normal beating for a while.
2. The heart skips a beat.
3. Normal beating for a while.
4. The heart skips a beat.
The Wenckebach phenomenon

We will now study another condition called the Wenckebach phenomenon. Under this condition the heart goes through the following cycle:

1. Normal beating for a while.
2. The heart skips a beat.
3. Normal beating for a while.
4. The heart skips a beat.
5. And so on.
Let $u = W = 1$. As we have seen, the conditions on an equilibrium V^* are

$$V^* = \frac{u}{1-c} = \frac{1}{1-c} \quad cV^* \leq W$$
Let $u = W = 1$. As we have seen, the conditions on an equilibrium V^* are

$$ V^* = \frac{u}{1 - c} = \frac{1}{1 - c} \quad cV^* \leq W $$

This gives that $cV^* = \frac{c}{1-c}$. Since $W = 1$ we get that $cV^* \leq W$ means that

$$ \frac{c}{1 - c} \leq 1, $$
Let $u = W = 1$. As we have seen, the conditions on an equilibrium V^* are

$$V^* = \frac{u}{1 - c} = \frac{1}{1 - c} \quad cV^* \leq W$$

This gives that $cV^* = \frac{c}{1-c}$. Since $W = 1$ we get that $cV^* \leq W$ means that

$$\frac{c}{1 - c} \leq 1,$$

that is $c \leq 1 - c$. Hence $2c \leq 1$ and $c \leq 0.5$.
The Wenckebach phenomenon

Let $u = W = 1$. As we have seen, the conditions on an equilibrium V^* are

$$V^* = \frac{u}{1 - c} = \frac{1}{1 - c}, \quad cV^* \leq W$$

This gives that $cV^* = \frac{c}{1 - c}$. Since $W = 1$ we get that $cV^* \leq W$ means that

$$\frac{c}{1 - c} \leq 1,$$

that is $c \leq 1 - c$. Hence $2c \leq 1$ and $c \leq 0.5$.

The Wenckebach phenomenon occurs when there is no equilibrium but there almost is one. In other words $0.5 < c$, but c is close to 0.5.
Here is an example where $c = 0.5001$.

\[
\begin{align*}
\text{u} &= 1 \\
W &= 1 \\
c &= 0.5001
\end{align*}
\]
The Wenckebach phenomenon

Zooming in: there is no equilibrium.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1, \quad W = 1, \quad c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\begin{align*}
u &= 1 \\
W &= 1 \\
c &= 0.5001
\end{align*}
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$

$W=1$

$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
We cobweb from $V_0 = 1$.

\[
\begin{align*}
&u = 1 \\
&W = 1 \\
&c = 0.5001
\end{align*}
\]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u=1 \]
\[W=1 \]
\[c=0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
We cobweb from $V_0 = 1$.

$u = 1$

$W = 1$

$c = 0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u = 1$
$W = 1$
$c = 0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u = 1$
$W = 1$
$c = 0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$\begin{align*}
 u &= 1 \\
 W &= 1 \\
 c &= 0.5001
\end{align*}$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\begin{align*}
u &= 1 \\
W &= 1 \\
c &= 0.5001
\end{align*}
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1, \quad W = 1, \quad c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
We cobweb from $V_0 = 1$.

\[u = 1 \]
\[W = 1 \]
\[c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\begin{align*}
u & = 1 \\
W & = 1 \\
c & = 0.5001
\end{align*}
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

- $u = 1$
- $V = 1$
- $c = 0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u = 1$
$W = 1$
$c = 0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

\[u=1 \]
\[W=1 \]
\[c=0.5001 \]
We cobweb from $V_0 = 1$.

\[u = 1 \\
W = 1 \\
c = 0.5001 \]
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$$ u=1 $$
$$ W=1 $$
$$ c=0.5001 $$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from $V_0 = 1$.

$u=1$
$W=1$
$c=0.5001$
The Wenckebach phenomenon

We cobweb from \(V_0 = 1 \).

\[
\begin{align*}
u &= 1 \\
W &= 1 \\
c &= 0.5001
\end{align*}
\]
The Wenckebach phenomenon

Here is the solution.
The Wenckebach phenomenon

The potential decays between signals from the SA node.