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Abstract. The Weierstrass-Enneper Representations are a great link between several
branches of mathematics. They provide a way to study surfaces using both geometry
and complex analysis. The Weierstrass-Enneper Representation for minimal surfaces
says that any minimal surface may be represented by complex holomorphic functions.
With the use of differential forms, this idea may be generalized to constant mean
curvature surfaces, which yields Hamiltonian systems. The ability to study a problem
from several different angles can be a very useful tool in mathematics, which makes the
Weierstrass-Enneper Representations an exciting discovery.
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1 Introduction

Mathematics is divided into many different categories and subjects. Sometimes it seems as if
these subjects do not connect, especially when studied in high school or college classes that do
not feel as if they overlap. It is always exciting, then, when a connection between two seemingly
unrelated areas of math is made. In reality, the many different “subjects” of math are intertwined
in beautiful ways. Sometimes these connections are obvious and at other times they take some
thought and imagination to discover. Karl Weierstrass and Alfred Enneper discovered one of these
connections. Their discovery is now known as the Weierstrass-Enneper Representations. They
link together complex analysis, differential geometry, and Hamiltonian systems. Weierstrass and
Enneper figured out that minimal surfaces can be represented by holomorphic and meromorphic
complex functions. This idea can then be generalized to constant mean curvature surfaces, and this
generalization produces Hamiltonian systems. In order to dive into all of this, some background
information about minimal surfaces, complex functions, and Hamiltonian systems is needed.

2 Minimal Surfaces

A surface M is called a minimal surface if the mean curvature, usually called H, is zero. The
mean curvature is the average of the principal curvatures of that surface, so if we call the principal
curvatures k1 and k2, then

H = k1 + k2
2

. (1)
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The principal curvatures at a point p on a surface are the curvatures in the directions of maximal
and minimal curvature at that point. They can be computed as the eigenvalues of the shape
operator (Sp), which is a linear transformation from the tangent space of the surface at that point
to itself (Sp ∶ TpM → TpM) [1].

Let a surface M ⊆ R3 be parameterized by x⃗(u, v) ∶ Ω ⊆ R2 →M . Then the unit normal vector
to the surface is N⃗ = x⃗u×x⃗v

∣x⃗u×x⃗v ∣
. The following equations can be used to compute the mean curvature

and provide a way to define the shape operator as a matrix [1, 2]. Define E, F , G, l, m, and n as

E = x⃗u ⋅ x⃗u,
F = x⃗u ⋅ x⃗v,
G = x⃗v ⋅ x⃗v, (2)

l = ⃗xuu ⋅ N⃗ ,
m = x⃗uv ⋅ N⃗ ,
n = x⃗vv ⋅ N⃗ .

Then the shape operator is

S = 1

EG − F 2
(Gl − Fm Gm − Fn
Em − Fl En − Fm) , (3)

and the mean curvature is

H = En +Gl − 2Fm

2(EG − F 2) = 1

2
tr(S). (4)

These equations work for any patch x⃗(u, v), but sometimes it is useful to use a patch with special
properties.

3 Isothermal Patch

If x⃗(u, v) ∶ Ω → M is a patch such that E = G and F = 0, it is called an isothermal patch.
Geometrically this means that x⃗u and x⃗v are orthogonal, so angles are preserved, and x⃗ stretches
the patch the same amount in the u and v directions. If x⃗ is an isothermal patch, then

H = En +El
2E2

= n + l
2E

, (5)

so the mean curvature is very easy to compute. There is a theorem that states that isothermal
coordinates exist on any minimal surface M ⊆ R3. In fact, any surface can be parameterized using
an isothermal patch. The Weierstrass-Enneper Representation for minimal surfaces requires that
the minimal surfaces be represented by isothermal patches [1].

4 Harmonic Functions

Another type of patch that plays a role in the Weierstrass-Enneper Representations is a harmonic
patch. A real function x(u, v) is harmonic if its second-order partial derivatives are continuous

and △x ∶= ∂2x
∂u2

+ ∂2x
∂v2

= 0. A theorem in differential geometry states that if x⃗(u, v) is isothermal,

then △x⃗ = (2EH)N⃗ . The following corollary to this theorem is important in the proof of the
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Weierstrass-Enneper Representation for minimal surfaces [1].

Corollary: A surface M ∶ x⃗(u, v) = (x1(u, v), x2(u, v), x3(u, v)), with isothermal coordinates is min-
imal if and only if x1, x2, and x3 are all harmonic.

Proof [1]: (Ô⇒) If M is minimal, then H = 0Ô⇒△x⃗ = (2EH)N⃗ = 0Ô⇒ x1, x2, x3 are
harmonic.

(⇐Ô) If x1, x2, x3 are harmonic, then △x⃗ = 0Ô⇒ (2EH)N⃗ = 0.
Now N⃗ is the unit normal vector, so N⃗ /= 0 and E = x⃗u ⋅ x⃗v = ∣x⃗u∣2 /= 0.
So H = 0Ô⇒ M is minimal.

QED

Intuitively this corollary makes sense because the curvature (κ) of a curve in a plane is essentially
the rate that the tangent vector to the curve is changing. For a curve (α) parameterized by arc-

length, κ = ∣dTds ∣ = ∣d2α
ds2

∣. Since x⃗(u, v) is not parameterized by arc-length, the principle curvatures
are not exactly the magnitude of the second derivatives ∣x⃗uu∣ and ∣x⃗vv ∣, but they are certainly
related. So it makes sense to say that if xjuu+xjvv = 0 for j ∈ {1,2,3}, then k1+k2 = 0 and vice versa.

5 Holomorphic and Meromorphic Complex Functions

The Weierstrass-Enneper Representations do not only depend on differential geometry concepts, it
is also important to understand some complex analysis. A complex function f(z) is holomorphic

at a point z0 if limh→0
f(z0+h)−f(z0)

h exists, so f is holomorphic in a region if it is differentiable at
every point in that region. A complex function g(z) is meromorphic in a region if it is holomorphic
everywhere in that region except at isolated singularities and all of these singularities are poles. A
point z0 is a pole if f → ∞ as z → z0. A complex number may be expressed as z = u + iv where
u, v ∈ R, and its complex conjugate is z = u − iv. The derivatives of z and z may be expressed
as ∂

∂z = 1
2(

∂
∂u − i

∂
∂v ) and ∂

∂z = 1
2(

∂
∂u + i

∂
∂v ). If f ∶ U → V is holomorphic and bijective, it is called

a conformal map. Conformal maps preserve angles [3]. Isothermal patches also preserve angles,
so this is the first connection between differential geometry and complex analysis that has been
mentioned so far [4]. If a minimal surface can be represented by an isothermal patch, could it also
be represented by a holomorphic function?

6 The Weierstrass-Enneper Representation for Minimal Surfaces

With all of this background information about minimal surfaces, isothermal patches, harmonic
functions, and holomorphic and meromorphic functions, the Weierstrass-Enneper Representation
for minimal surfaces may be constructed. First, it would be good to look at an example. Since it
is called the Weierstrass-Enneper Representation, Enneper’s Surface makes a great example [4].

Enneper’s Surface

The most common parameterization for Enneper’s surface is

x⃗(u, v) = (u − 1

3
u3 + uv2,−v − u2v + 1

3
v3, u2 − v2). (6)

First show that this is an isothermal patch.
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x⃗u = (1 − u2 + v2,−2uv,2u)
x⃗v = (2uv,−1 − u2 + v2,−2v)

E = x⃗u ⋅ x⃗u = 1 + 2u2 + 2v2 + 2u2v2 + u4 + v4
G = x⃗v ⋅ x⃗v = 1 + 2u2 + 2v2 + 2u2v2 + u4 + v4
F = x⃗u ⋅ x⃗v = 2uv(1 − u2 + v2) − 2uv(−1 − u2 + v2) − 4uv = 0

Since E = G and F = 0, x⃗(u, v) is isothermal.

Now let z = u + iv and φ⃗ = x⃗u − ix⃗v.

Then
φ⃗ = (1 − u2 + v2 − i2uv,−2uv − i(−1 − u2 + v2),2u + i2v)
= (1 − (u + iv)2, i(1 + (u + iv)2),2(u + iv))
= (1 − z2, i(1 + z2),2z).

Notice that φ1(z) = 1 − z2, φ2(z) = i(1 + z2), and φ3(z) = 2z are all holomorphic, so Enneper’s
surface can be represented by holomorphic functions [4].
Is it possible to go backwards? Given φ⃗, can Enneper’s surface be derived? Weierstrass figured out
that, yes it is possible to obtain Enneper’s surface from φ⃗.

We know φ⃗ = x⃗u − ixv and φ1(z) = 1 − z2, φ2(z) = i(1 + z2), and φ3(z) = 2z, and we want x⃗(u, v) to
be real-valued.

Let x1 = Re(∫ (1 − z2)dz) x2 = Re(∫ i(1 + z2)dz) x3 = Re(∫ 2zdz)
= Re(z − 1

3z
3) = Re(i(z + 1

3z
3)) = Re(z2)

= Re(u + iv − 1
3(u + iv)

3) = Re(i(u + iv + 1
3(u + iv)

3)) = Re((u + iv)2)
= u − 1

3u
3 + uv2 = −v − u2v + 1

3v
3 = u2 − v2.

Then we get x⃗(u, v) = (u − 1
3u

3 + uv2,−v − u2v + 1
3v

3, u2 − v2), which is Enneper’s surface [4]!
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Enneper’s surface provides a great example of how a minimal surface may be represented by
holomorphic functions, but now this idea needs to be generalized to all minimal surfaces.

From Isothermal Patches to Holomorphic Functions

Let M be a minimal surface described by an isothermal patch x⃗(u, v).
Let z = u + iv, so then ∂

∂z =
1
2(

∂
∂u − i

∂
∂v ), z = u − iv, and ∂

∂z =
1
2(

∂
∂u − i

∂
∂v ).

Notice that z + z = 2u and z − z = i2v, so

u = z + z
2

(7)

v = z − z
2i

.

This means that x⃗(u, v) may be written as

x⃗(z, z) = (x1(z, z), x2(z, z), x3(z, z)), (8)

and the derivative of the jth component is

∂xj

∂z
= 1

2
(xju − ixjv). (9)

Define

φ⃗ = ∂x⃗
∂z

= (x1z, x2z, x3z) (10)

(φ)2 = (x1z)2 + (x2z)2 + (x3z)2. (11)

Then (φj)2 = (xjz)2 = (12(x
j
u − ixjv))2 = 1

4((x
j
u)2 − (xjv)2 − 2ixjux

j
v),

so (φ)2 = 1
4(∑

3
j=1((x

j
u)2 − (xjv)2 − 2ixjux

j
v))

= 1
4(∣x⃗u∣

2 − ∣x⃗v ∣2 − 2ix⃗u ⋅ x⃗v)
= 1

4(E −G − 2iF ).

Since x⃗ is isothermal, (φ)2 = 1
4(E −E) = 0 [1].

The following theorem relates minimal surfaces to holomorphic functions.

Theorem: Suppose M is a surface with patch x⃗. Let φ⃗ = ∂x⃗
∂z and suppose (φ)2 = 0 (i.e., x⃗ is isother-

mal). Then M is minimal if and only if each φj is holomorphic [1].

The proof of this theorem requires the following lemma.

Lemma: ∂
∂z (

∂x⃗
∂z ) =

1
4 △ x⃗ [1, 3].

Proof of lemma: ∂
∂z (

∂x⃗
∂z ) =

∂
∂z (

1
2(

∂x⃗
∂u − i

∂x⃗
∂v ))

= 1
2(

1
2(

∂
∂u(

∂x⃗
∂u − i

∂x⃗
∂v ) + i

∂
∂v (

∂x⃗
∂u − i

∂x⃗
∂v )))

= 1
4(

∂2x⃗
∂u2

− i∂x⃗∂u
∂x⃗
∂v + i

∂x⃗
∂u

∂x⃗
∂v +

∂2x⃗
∂v2

)
= 1

4(
∂2x⃗
∂u2

+ ∂2x⃗
∂v2

)
= 1

4 △ x⃗.
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QED

Another useful tool in proving the above theorem is a theorem from complex analysis that says f
is holomorphic if and only if ∂f

∂z = 0 [3].

Proof of the above theorem: (Ô⇒) If M is minimal, then, by the corollary proven in the
harmonic function section, xj is harmonic for j ∈ {1,2,3}.
xj harmonic Ô⇒△x⃗ = 0

Ô⇒ 1
4 △ x⃗ = 0

Ô⇒ ∂
∂z (

∂x⃗
∂z ) = 0 by the above lemma

Ô⇒ ∂φ⃗
∂z = 0.

By the theorem from complex analysis, since ∂
∂z (

∂x⃗
∂z ) = 0,

φj is holomorphic.

(⇐Ô) If φj is holomorphic, then ∂φ⃗
∂z = 0Ô⇒ ∂

∂z (
∂x⃗
∂z ) =

1
4 △ x⃗ = 0

Ô⇒△x⃗ = 0
Ô⇒ xj is harmonic.

xj harmonic Ô⇒ M is minimal.
QED

Now any minimal surface may be represented using φ⃗ with holomorphic components and (φ)2 = 0.
Given φ⃗, how is an isothermal patch x⃗ for M constructed? The following corollary to the theorem
proven above shows that the components of φ⃗ may be integrated to obtain the components of x⃗ [1].

Corollary: xj(z, z) = cj + 2Re(∫ φjdz) [1].

Proof of corollary [1]: z = u + ivÔ⇒ dz = du + idv
φjdz = 1

2(x
j
u − ixjv)(du + idv) = 1

2((x
j
udu + xjvdv) + i(xjudv − xjvdu))

φ
j
dz = 1

2(x
j
u + ixjv)(du − idv) = 1

2((x
j
udu + xjvdv) − i(xjudv − xjvdu))

Then we have dxj = ∂xj

∂z dz +
∂xj

∂z dz

= φjdz + φjdz
= 1

2(x
j
udu + xjvdv) + 1

2(x
j
udu + xjvdv)

= xjudu + xjvdv
= 2Re(φjdz)

Ô⇒ xj = 2Re(∫ φjdz) + cj .
QED

Now we know how to construct x⃗ if we have φ⃗, but what is φ⃗ for a general minimal surface? We
need each component, φj to be holomorphic and (φ)2 = 0. A nice way to construct φ⃗ is as follows [1].

Let f be a holomorphic function and g be a meromorphic function such that fg2 is holomorphic.
Let

φ1 = 1

2
f(1 − g2)

φ2 = i
2
f(1 + g2) (12)

φ3 = fg.
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Then φ1, φ2, and φ3 are holomorphic and (φ)2 = 1
4f

2(1 − g2)2 − 1
4f

2(1 + g2)2 + f2g2 = 0 [1].

Now we have everything we need to understand the Weierstrass-Enneper Representation for mini-
mal surfaces.

The Weierstrass-Enneper Representation for Minimal Surfaces

Theorem: The Weierstrass-Enneper Representation [1]: If f is holomorphic on a domain D,
g is meromorphic on D, and fg2 is holomorphic on D, then a minimal surface is defined by
x⃗(z, z) = (x1(z, z), x2(z, z), x3(z, z)), where

x1(z, z) =Re(∫ f(1 − g2)dz)

x2(z, z) =Re(∫ if(1 + g2)dz) (13)

x3(z, z) =Re(∫ 2fgdz).

In the Enneper’s surface example, we need f = 1 and g = z. Then φ⃗ = (1 − z2, i(1 + z2),2z) =
(f(1 − g2), if(1 + g2),2fg).

There is another way to write Weierstrass-Enneper using just one holomorphic function that
is a composition of functions. If g is holomorphic with g−1 also holomorphic, then set τ = g which
means dτ

dz =
dg
dz , so dτ = dg. Define F (τ) = f/dgdz = f

dz
dg . Then F (τ)dτ = f(dzdg )(dg) = fdz. Substitute

τ for g and F (τ)dτ for fdz in the Weierstrass-Enneper Representation to get the following version
of Weierstrass-Enneper [1].

Theorem: Weierstrass-Enneper Representation II: For any holomorphic function F (τ), a minimal
surface is defined by x⃗(z, z) = (x1(z, z), x2(z, z), x3(z, z)) where

x1(z, z) =Re(∫ (1 − τ2)F (τ)dz)

x2(z, z) =Re(∫ i(1 + τ2)F (τ)dz) (14)

x3(z, z) =Re(∫ 2τF (τ)dz).

A good example of using this version of Weierstrass-Enneper is the helicoid.

The Helicoid

A helicoid may be obtained from F (τ) = i
2τ2

where τ = ez [1]. Notice that τ = ez, τ−1 = Log(z),
and F (ez) = i

2e2z
are all holomorphic on the domain of Log(z). I have used Log(z) instead of

log(z) because Log(z) is the principal branch of the log and branches of the log are holomorphic,
but log itself is not. Now compute x⃗(u, v) in the following way.

x1 = Re(∫ (1 − τ2) i
2τ2

dτ)
= Re( −i2τ −

i
2τ)

= Re(−i2 (e−z + ez))
= Re(−i2 (e−(u+iv) + eu+iv))

Dynamics at the Horsetooth 7 Vol. 4, 2012



The Weierstrass-Enneper Representations Myla Kilchrist and Dave Packard

= Re(−i2 (e−u(cos(−v) + isin(−v)) + eu(cos(v) + isin(v))))
= Re(−i2 e

−ucos(−v) + 1
2e

−usin(−v) − i
2e
ucos(v) + 1

2e
usin(v))

= 1
2e

−usin(−v) + 1
2e
usin(v)

x2 = Re(∫ i(1 + τ2) i
2τ2

dτ)
= Re( 1

2τ −
1
2τ)

= Re(12(e
−z − ez))

= Re(12(e
−(u+iv) − eu+iv))

= Re(12(e
−u(cos(−v) + isin(−v)) − eu(cos(v) + isin(v))))

= Re(12e
−ucos(−v) + i

2e
−usin(−v) − 1

2e
ucos(v) + i

2e
usin(v))

= 1
2e

−ucos(−v) − 1
2e
ucos(v)

x3 = Re(∫ 2τ( i
2τ2

)dτ)
= Re(iLog∣τ ∣)
= Re(iLog∣ez ∣)
= Re(iz)
= Re(i(u + iv))
= Re(iu − v)
= −v

So x⃗(u, v) = (12(e
−usin(−v) + eusin(v)), 12(e

−ucos(−v) − eucos(v)),−v) is an isothermal patch for
the helicoid.
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Now anyone who’s hobby is finding minimal surfaces can easily find them by integrating
holomorphic functions. What about other types of surfaces? The Weierstrass-Enneper
Representation may be generalized to constant mean curvature surfaces, which yields some
exciting results. Before doing so, a different derivation of the Weierstrass-Enneper Representations
integrating the machinery of differential forms is necessary.
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7 Weierstrass-Enneper Derivation Using Differential Forms

Consider a surface Ω ⊂ R3, with orthonormal frame {e1, e2, e3} such that e3 is the normal vector at
each point on Ω. For 1-forms ω1 and ω2 on the original patch there exist ω1′ , ω2′ on Ω such that

(ω
1′

ω2′) = T (ω
1

ω2) ,

where T is the shape operator, as defined in Eq. 3 [5]. If T is given by

T = (t11 t12
t21 t22

) ,

then, by Eq. 4, Ω is a minimal surface if and only if t11 + t22 = 0.
Define the 1-form

τ = (e1 − ie2)ω1 + (e2 + ie1)ω2.

Then,
dτ = i(t11 + t22)e3 ω1 ∧ ω2.

So, the following are equivalent:

1. Ω is a minimal surface.

2. t11 + t22 = 0.

3. dτ = 0

4. τ is a closed form.

Define the function f such that

ω1 + iω2 = fdz and therefore ω1 − iω2 = fdz. (15)

Taking the product of the two equations in Eq. 15 gives

∣f ∣2dz ∧ dz = ω1 ∧ ω1 − iω1 ∧ ω2 + iω2 ∧ ω1 + ω2 ∧ ω2

∣f ∣2dz ∧ dz = −2i ω1 ∧ ω2

dz ∧ dz = − 2i

∣f ∣2 ω1 ∧ ω2 ≠ 0

It follows that z can be used as a local coordinate on Ω, which makes Ω into a Riemann surface.
Finally, define F (z, z) = (e1 − ie2)f . It follows that

Fdz = (e1 − ie2)fdz = (e1 − ie2)(ω1 + iω2) = τ.

Therefore, dτ = 0 if and only if d(Fdz) = dF ∧ dz = 0. This gives the condition that F is a function
of z only, or ∂F

∂z = 0. It follows that Ω is a minimal surface if and only if F is holomorphic. If Ω
is indeed a minimal surface, then there exists a holomorphic function v(z) such that v′(z) = F (z).
Using v, one can define the 1-form ξ = dv, which gives rise to

R(ξ) =R(dv) = e1ω1 + e2ω2 = dx,

for a local position vector x on the surface. It follows that there exists some real-valued vector y
such that

v(z) = x(z) + iy(z).
Conversely, for any holomorphic C3-valued function v, the surface R(v) is a minimal surface. This
gives rise to Eq. 13 [5].
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8 Generalization to Constant Mean Curvature Surfaces

Let’s try to generalize the new derivation for minimal surface to surfaces of constant mean curvature.
Let H = c, for some constant c. Then t11 + t22 = 2H = 2c. Thus,

dτ = 2ice3 ω1 ∧ ω2.

Since dτ = d(Fdz),
d(Fdz) = dF ∧ dz = 2ice3 ω1 ∧ ω2 ≠ 0.

Therefore ∂F
∂z ≠ 0, so F is not a holomorphic function. OH NO! There is no general Weierstrass

Enneper representation for constant-mean curvature surfaces. However, this does not mean that
there are not other ways of representing constant mean curvature surfaces via holomorphic func-
tions. Indeed, if a system has a Hamiltonian structure, than the corresponding functions can be
found.

Example: Start with the linear system

ψ1z = pψ2 ψ2z = −pψ1 (16)

where ψ1 and ψ2 are complex valued functions, but p(z, z) is real valued. This system leads to the
surface given by

X1 + iX2 = 2i∫
z

z0
(ψ1

2
dz′ − ψ2

2
dz′)

X1 − iX2 = 2i∫
z

z0
(ψ2

2 dz′ − ψ2
1 dz′) (17)

X3 = −2∫
z

z0
(ψ2ψ1 dz′ + ψ1ψ2 dz′),

with mean curvature H = p(z,z)
∣ψ1∣

2+∣ψ2∣
2 [6]. So, if H is constant, then p(z, z) = H(∣ψ1∣2 + ∣ψ2∣2). Thus

Eq. 16 becomes
ψ1z =H(∣ψ1∣2 + ∣ψ2∣2)ψ2

ψ2z = −H(∣ψ1∣2 + ∣ψ2∣2)ψ1.

Splitting z into real and imaginary components, z = t+ix, gives generalized momentum, Hamiltonian
and Poisson bracket:

P = ψ1xψ2 − ψ1ψ2x dx

H = i(ψ1xψ2 + ψ1ψ2x) +
1

2
H(∣ψ1∣2 + ∣ψ2∣2)2 (18)

{F1, F2} = (∂F1

∂ψ1

∂F2

∂ψ2

− ∂F1

∂ψ2

∂F2

∂ψ1

) − (∂F2

∂ψ1

∂F1

∂ψ2

− ∂F2

∂ψ2

∂F1

∂ψ1

).

This Possion bracket gives rise to the sympletic form

ξ = dψ1 ∧ dψ2 + dψ1 ∧ dψ2.

This system is Hamiltonian because it can be represented in the form ψ1t = {ψ1,H}, ψ2t =
{ψ2,H}[6]. This is shown in the following computations:

{ψ1,H} = ∂H

∂ψ2

by Eq. 18.
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= iψ1x +H(∣ψ1∣2 + ∣ψ2∣2)ψ2 = ψ1t.

{ψ2,H} = ∂H

∂ψ1

by Eq. 18.

= iψ2x +H(∣ψ1∣2 + ∣ψ2∣2)ψ2 = ψ2t.

What symmetries are this Hamiltonian structure preserved under? Consider the case when p is a
function of only time p = p(t). Then, the system has solution

ψ1 = r(t) exp(iλx) ψ2 = s(t) exp(iλx),
where λ ∈ R − {0}, r(t) = p1 + ip2 & s(t) = q1 + iq2 where p1, p2, q1, q2 are real-valued functions.
Then

H0 =
H

2
(p21 + p22 + q21 + q22)2 − λ(p1q1 + p2q2) and

{F1, F2} = (∂F1

∂p1

∂F2

∂q1
− ∂F1

∂p2

∂F2

∂q2
) − (∂F2

∂p1

∂F1

∂q1
− ∂F2

∂p2

∂F1

∂q2
).

Then, the Hamiltonian and Poisson structure are preserved by an S1 action

[p1 → p1 cosφ − p2 sinφ
p2 → p1 sinφ + p2 cosφ

] [q1 → q1 cosφ − q2 sinφ
q2 → q1 sinφ + q2 cosφ

] .

As

H0 = H
2
((p1 cosφ − p2 sinφ)2 + (p1 sinφ + p2 cosφ)2 + (q1 cosφ − q2 sinφ)2 + (q1 sinφ + q2 cosφ)2)2

−λ ((p1 cosφ − p2 sinφ)(q1 cosφ − q2 sinφ) + (p1 sinφ + p2 cosφ)(q1 sinφ + q2 cosφ))

= H
2

((cos2 φ + sin2 φ)(p21 + p22 + q21 + q22))
2 − λ (p1q1(cos2 φ + sin2 φ) + p2q2(cos2 φ + sin2 φ))

= H
2
(p21 + p22 + q21 + q22)2 − λ(p1q1 + p2q2).

A similar computation can be used to show that the Possion bracket is also conserved under the
S1 action. It can be verified that this system is also invariant under the transformation

⎡⎢⎢⎢⎢⎢⎣

X1 →X1 cos τ −X2 sin τ
X2 →X1 sin τ +X2 cos τ

X3 →X3 + 4Mτ

⎤⎥⎥⎥⎥⎥⎦
,

where τ is the helicoidial transformation discussed above and M is the induced metric on the space
[6].

What does this example show?

In the example, the constant mean curvature surface was parametrized in Eq. 17, which looks
very similar to the Weierstrass-Enneper representation given in Eq. 13. Yet, these parameteriza-
tions are path integrals, so for either to be well defined, their exterior derivative must be zero. This
means for Eq. 17,

∂

∂z
(ψ1

2) = − ∂

∂z
(ψ2

2)
∂

∂z
(ψ2

2) = − ∂

∂z
(ψ2

1) (19)

∂

∂z
(ψ2ψ1) = ∂

∂z
(ψ1ψ2).

This gives a set of conserved quantities, which is the foundation of a Hamiltonian system. So, any
surface given by Eq. 17, also satisfies Eq. 19 and is therefore a Hamiltonian system.
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9 Conclusion

Connections between different areas of Mathematics are not presented or celebrated as much as
they could be. The Weistrass-Enneper representations are one example of both how beautiful and
powerful the connections between different areas in Mathematics can be, weaving together Differen-
tial Geometry, Complex Analysis and Hamiltonian Systems. All minimal surfaces can be given by
the representation in Eq. 13, while all holomorphic functions can then generate a minimal surface
by the same parametrization. This can be extended to the representation of Eq. 17 for a general
surface, which will therefore have Hamiltonian structure satisfying Eq. 19. The duality also extends
in the other direction; for a Hamiltonian system satisfying Eq. 19 will give yield to a surface via
Eq. 17. Classifying when these surfaces have constant mean curvature remains an area open for
exploration in Mathematics, making the Wiestrass-Enneper representations promising for future
results, despite having already provided beautiful and powerful connections in Mathematics.

(Picture courtesy of PIXAR)

Dynamics at the Horsetooth 12 Vol. 4, 2012



The Weierstrass-Enneper Representations Myla Kilchrist and Dave Packard

References

[1] Oprea, J. 2007. Differential Geometry and Its Applications. Mathematical Association of
America, Inc., USA.

[2] Pressley, A. Elementary Differential Geometry. 2001. Springer, London.

[3] Stein, E., Shakarchi, R. 2003. Princeton Lectures in Analysis II Complex Analysis. Princeton
University Press, Princeton, New Jersey.

[4] Korevaar, N. March 26, 2002. Making Minimal Surfaces with Complex Analysis. University of
Utah.

[5] Clelland, J. Lie Groups and the Method of the Moving Frame.

[6] Konopelchenko, B. G., Taimanov, I. A. May 26, 1995. Constant mean curvature surfaces via
integrable dynamical system.

Dynamics at the Horsetooth 13 Vol. 4, 2012


