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Abstract: In this paper we will give an overview of Hamiltonian systems with specific 
examples, including the classical pendulum example.  Upon addressing the properties of 
Hamiltonian systems we will then explore how chaos arises. More specifically, we will consider 
two examples: solar system orbits and a zero-sum two-player game.  
 
 
1. Introduction 
 
Hamiltonian Mechanics is a derivation of classical mechanics offering a deeper insight into the 
connection between classic and Lagrangian mechanics.  There are many applications, to name a 
few: simple harmonic oscillators, planet orbits, and the weather.  Perturbations in Hamiltonian 
systems give rise to chaos, which can be explained through KAM theory.  Although the study of 
Hamiltonian Mechanics has been around since the 1800’s, chaos is only now beginning to be 
understood. 

 
2. History 

 
Hamiltonian Mechanics was introduced in 1833 by the Irish mathematician William Rowan 
Hamilton.  As a man inspired with knowledge at a very young age 
Hamilton was able to accomplish many tasks in only the 60 years he 
lived.  He attended Trinity College in Dublin, which is where he would 
spend his entire academic career. While there, he studied optics, classical 
mechanics, dynamic methods, quaternions, conjugate algebraic couple 
functions, and many other topics. Hamilton remained active in the 
mathematical society until his death in 1865 from a severe case of gout, 
due to excessive drinking [18].  
 

        
            
                  
             Figure 1:  William Hamilton [19] 

 
3. Overview of Hamiltonian Systems 
 
Hamiltonian systems satisfy a number of properties, but before addressing those, an overview of 
what a Hamiltonian system is needs to be addressed.  A Hamiltonian system with n degrees of 
freedom on an open subset E of must satisfy the following: 
Let where with .  Then the system  



,  

satisfies  

and 
 

where x represents a generalized coordinate vector and y represents a momentum vector [11].    
But why classify these systems?  Why not just consider Lagrangian systems?  The reason to step 
away from Lagrangian systems is that Hamiltonian systems link classical and quantum 
mechanics.  More specifically, Hamiltonian systems are conservative, which can easily be 
extended to many physical systems.  Furthermore, the biggest difference between Hamiltonian 
systems and Lagrangian systems is the fact that Hamiltonian equations have a larger set of 
symmetries.  By applying these equations to physical systems, it is easier to exploit and 
manipulate the symmetries.  Thus, Hamiltonian systems provide more tools to implement when 
trying to understand a physical system.    
 

One of the most basic examples of a Hamiltonian system is the ideal pendulum.  In this 
case, there is a mass m attached to a rigid, massless rod of length L in a “vacuum.”  The 
momentum of this system is in terms of the angular momentum, namely, , and the 
potential energy is given by  where is the gravitational force inside the vacuum.  
These two equations lead to the Hamiltonian system:   

 
where  and  [7]. 
 
 
 

 
Figure 2:  Ideal Pendulum [10] 

 
 
 



 In fact, the pendulum is a more specific type of a Hamiltonian system.  The class of 
Hamiltonian systems in which the pendulum fits into is called the Newtonian system.  
Newtonian systems have one degree of freedom and can be written in the form  

 
where .  In turn, this differential equation can be re-written as a system in  where  

. 

Then the total energy is given by where is the kinetic energy and 

 is the potential energy [11].  And clearly, when rewriting the Newtonian 

system in this manner, it can be seen that it is, in fact, a Hamiltonian system.  An interesting fact 
about Newtonian systems is that all the critical points lie on the x-axis, which is further 
supported by the pendulum example [11].   
 Hamiltonian systems are also related to gradient systems.  A gradient system is defined as 
follows:  Let E be an open subset of  and let .  A system of the form 

 where is called a gradient system on E [11].  But 
how is this related to Hamiltonian systems?  The system of the form ,  (a 
planar system) is a Hamiltonian system if and only if the system, , ,      
orthogonal to the planar system is a gradient system [11].  This connection is another tool to be 
used when investigating Hamiltonian systems. 
 
   
3.1 Properties 
 
Hamiltonian systems consist of numerous properties.  The most well-known property is that 
Hamiltonian systems conserve at least one particular quantity, namely energy.  More 
specifically, the total energy H of the Hamiltonian system remains constant along its trajectories.  
This can be proven by taking the derivative of H with respect to time t.  In doing so, we get that 
it equals zero, which proves that H is constant along any solution curve.  Therefore, the 
trajectories of the system are on the surfaces of H, which is a constant.  In particular, the ideal 
pendulum system conserves energy.  It is important to note that there are systems that conserve 
energy but are non-Hamiltonian.  Thus, conversing energy is not the only key property of 
Hamiltonian systems.  Furthermore, Hamiltonian systems are frictionless and the equations are 
time-reversible.  Also, the motion of the system occurs in a hypersurface and the flow is 
incompressible.  Incompressible flow is characterized by the unchanged density of a system.  
Hamiltonian systems also possess other properties, but those will not be addressed in this paper 
[1]. 
 

Now properties of Hamiltonian systems as they relate to an entry level ordinary 
differential equation course will be addressed.  In particular, equilibrium points will be 
investigated.  The first thing to note is that the critical points of H correspond to the equilibrium 
points of the system.  Furthermore, the equilibrium points are non-degenerate if the determinant 
of the second derivative of H is nonzero when evaluated at the equilibrium points.  Stability can 



also be determined using the second derivative of H.  When evaluating the second derivative at 
an equilibrium point, if all the eigenvalues have a positive real part, then that point is stable.  If 
we consider Hamiltonian systems of degree one, then non-degenerate equilibrium points can be 
classified more readily.  If an equilibrium point is non-degenerate, then we have that that point is 
a saddle of the Hamiltonian system if and only if it is a saddle of H.  Furthermore, it is a center if 
and only if it is a local maximum or a local minimum of H [8].   In the pendulum case, we can 
see from the following phase space trajectories that we get centers and saddles. 
 
  

 
Figure 3:  Ideal Pendulum Phase Portrait  [9] 

 
 
 
 
3.2 Examples 
 
In order to see how the above properties apply to Hamiltonian systems, a more complicated 
example will be explored.  One such example is that of charged particles in a magnetic field.  
More specifically, the Kepler problem will be investigated.  In the Kepler system there are two 
particles in .  This system has one particle fixed at the origin, while the other moves based on 
the gravitational field created by the fixed particle.  What is being investigated in the Kepler 
problem is the movement of the non-fixed particle.  The Hamiltonian system is as follows:   

 
where <,> is the Euclidean inner product, |q| is the length of the vector q, and u is the attractive 
force (u>0).  Based on this system, we obtain the following two equations:  

,  [16]. 
This system conserves angular momentum and occurs in many cases.  It arises in celestial 
mechanics; more specifically, it deals with satellites moving about planets or a planet about the 
sun.  The Kepler problem also arises in electrostatics, especially with hydrogen atoms, 
positronium, and muonium.  While the Kepler system is a bit more complicated system than that 
of the pendulum, it is the other foundation to classical mechanics (the other being the pendulum).  
In fact, in these two cases, they both have closed orbits for every possible set of initial conditions 
[4].  The following image is a prototype of the Kepler problem.   



 
 

 
 

Figure 4:  An example of a Kepler problem [12] 
 
 
 

Another example that is timeless and has numerous applications is the field line behavior.  
Consider a vector field  where .  Then the field line behavior in space can be written 
as follows:  

 
 

But this formula can be re-written (and simplified) in parametric form to obtain the following:  
  

  
 
where t represents the length of the field line.  This parametric form is then used for various 
applications.  One application is that for advected particles in fluids, also known as tracers.  The 
following figure is a neat, specific example of where tracers are actually used in the real world.  
This example is used to help design video games from Intel by simulating a ball flowing through 
a fluid and a fluid flowing past a ball.    Another application for field line behavior is in magnetic 
field lines with respect to fusion devices [20].  



 
                    
 
3.3 Integrability versus Non-Integrability  
 
Integrability of a Hamiltonian system plays an enormous role in the perturbation of that system.  
In fact, as it will be discussed in the following section, chaos can occur when a system becomes 
perturbed.  Thus, integrability of a system is a necessary factor when studying Hamiltonian 
systems.  Furthermore, the definition of integrability is not unique, so this paper will present a 
variety of definitions.  The reader may choose to use which ever definition suites her best.  
Lastly, before presenting these definitions, it is important to realize that these definitions have a 
specific name.  Specifically, we say a Hamilton system is Liouville integrable if any of the 
following definitions is satisfied.  One definition of integrability is as follows:  a system is 
integrable if its solutions can be expressed through quadratures [20].  But the word quadrature 
has at least three distinct meanings in mathematics, so this definition is a bit ambiguous.  
Therefore, the following is another definition of integrability:  a system is integrable if the 
number M of independent commuting integrals satisfy the condition  (N is the degrees of 
freedom), but the family of trajectories of the Hamiltonian system cannot be displayed on an 
invariant N-torus.  Or rather, a system is integrable if it can be written in the following form:   
 

,     

 
where I is a function of actions and  are phases canonically conjugated to I [20].  

 
 
But, these definitions of integrability could be negated to give us the definition of a Hamiltonian 
system being non-integrable.  We will now consider several non-integrable systems with two 
degrees of freedom.   



 
 

Double Torus:  Non-Integrable 
 

 
2-Dimension Billiard:  Non-Integrable 

 

 
2-Dimension Billiard:  Non-Integrable 

 

 
2-Dimension Billiard:  Non-Integrable 

 



These four systems are non-integrable due to the trajectories that wind about each surface.  These 
trajectories are sensitive to small perturbations.  Thus, the systems cannot be integrated.       
 
 
4. Hamiltonian Chaos 
 
4.1 Definition and Properties 
 
In a non-chaotic Hamiltonian system, the motion is oscillatory.  Thus, geometrically we get that 
the orbits of the system move on tori.  But, for chaos to be introduced into the system, the tori 
need to be destroyed.  And by destroying the invariant tori, the system in turn creates a cantori.  
Chirikov first discovered that for local chaos to occur in a Hamiltonian system, stable and 

unstable manifolds had to intersect.  And this chaos occurs when , where ,  

is the frequency and  is the distance frequency between two unperturbed resonances.  
Furthermore, Chirokov found that global chaos occurs when [15].  Poincaré labeled 
this occurrence “homoclinic trellis.”  This idea can be seen through the work of John Greene in 
1968.  His work dealt with further perturbing a KAM torus.  He found that if one continually 
perturbs a KAM torus, it reaches a point where the phase space has fractal structure.  Upon 
reaching this point, if the torus is perturbed anymore, the torus will be destroyed, creating a 
cantorus [7].  

 
But the question should be, how do these tori become perturbed?  It should be noted that 

the tori are not perturbed in the integrable Hamiltonian system H that was defined earlier.  
Rather, the system becomes perturbed when a nonintegrable Hamiltonian perturbation is added.  
In doing so, the following equation is obtained:   

. 
In adding the nonintegrable function, tori begin to deform, and those that survive are 
“sufficiently irrational.”  In fact, according to KAM theory, tori survive for perturbations if  

     
for  and is of order  for small , where  is based 

on frequency.  But for chaos to occur, even these “sufficiently irrational” tori become perturbed 
[1]. 
 
 
4.2 Chaos Examples 
 
One common and interesting example of Hamiltonian chaos is the problem of stability of the 
solar system. Is the solar system stable over long periods of time? This can be modeled as a 
Hamiltonian system by considering the force between each pair of massive bodies, or planets. 
The problem is simple to set up but very difficult to solve, so difficult, in fact, that it hasn’t been 
answered and continues to stump mathematicians. So, mathematicians considered a more simple 



system using only the sun and two planets.  This has become famously known as the “three body 
problem”. In the mid-20th Century three Russian mathematicians found the solution, known 
today as the KAM theorem.  The theorem is based on invariant tori and answers the question, 
what happens to the invariant tori as the nonlinearity of the system increases? How does this 
answer our solar system question? Well, the planets motion represent that of a torus, so over a 
long period of time if we know what happens to a torus then we know what happens to the solar 

system.  The KAM theorem concludes 
that tori go unstable in order of their 
degree of irrationality. So, for the 
“three body problem” consider the 
Earth, Jupiter, and the Sun. The full 
phase space would be 18 dimensional 
and the motion is represented as a 
torus. The winding numbers is the 
same as the ratio of orbit periods 
which happens to be about 11.862972. 
This seems fairly irrational, so we 
could expect Earth’s orbit to be fairly 
stable.  This is of course a simple 
model and becomes more difficult 
when considering larger and more  
complicated systems [6]. But this 
theory tells us how  Hamiltonian  

Figure 5:  Solar system and chaos [16] 
systems become chaotic, which is what we’re interested in. 

 
Other interesting examples arise in 

economics and simple two-person games. 
Consider the zero-sum game of rock, paper, 
scissors.  The zero-sum game can be represented  
as a Hamiltonian system since the learning 
dynamics have a conserved quantity.  We would 
expect the game to converge to the Nash 
Equilibrium, since this would imply that at every  
step of the game, a player tries to better his/her 
position in the game. However, this is not always 
true and when a player does not take the Nash 
Equilibrium mixed strategy, which is to choose 
the move randomly with all choices having          Figure 6:  Rules of Rock, Paper, Scissors [13] 
equal probability, the game results in chaos. 
This can be modeled by: 

 

  

 



Player one chooses from different strategies with frequency  and player two 
chooses from different strategies with frequency , where A is the payoff matrix 
for player one and B is the payoff matrix for player two.  
 

 ,    

 
Note that  and  are the payoffs for a tie. Since , the dynamics are 
Hamiltonian.  Choosing  with 

 and varying  from 0 to 0.5 results in chaos [14].  Nash strategy appears often in 
economics and has similar outcomes to the rock, paper, scissors game [14]. 
    
 
 
5. Conclusion 
 
There is still much to be known about chaos, as seen in the example of the solar system.  The 
neat thing about these systems is that they apply to many areas.  We would be interested in 
seeing if Hamiltonian chaos arises in an n-person ( ) zero-sum game.  And we also look 
forward to the discoveries that will be made in the study of chaos with regards to the solar 
system. This paper is just a brief overview of Hamiltonian chaos and the interested reader should 
seek further references.  
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