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A Brief History of Chemical Oscillators

• Have only been recognized as mainstream 
science since the 1960s.

• Prior belief was that all chemical reactions 
progressed in one direction (monotonically) to 
equilibrium.



A Brief History of Chemical Oscillators

• First oscillating reaction 
discovered around 1950 by Boris 
Pavlovich Belousov.

• Solution of citric acid in water with 
acidified bromate and ceric ions 
oscillated from colorless to yellow 
for up to an hour.



A Brief History of Chemical Oscillators

• Belousov’s work ill-received by scientific community.

• Was only recognized posthumously for his 
contributions.

• Work was continued by Anatol Zhabotinsky in 1961.

• Zhabotinsky succeeded in awakening the scientific 
community to  the validity of chemical oscillators.

• The cerium-bromate reaction became known as the 
Belousov-Zhabotinsky (BZ) Reaction.



A Brief History of Chemical Oscillators

• Today, many chemical systems are known to 
oscillate.

• Various mathematical models have been developed 
to describe the BZ reaction.
▫ Brusselator
▫ Oregonator

• To date, however, the actual reaction mechanism 
remains a mystery.



Background: Chemical Kinetics

• Suppose 2 species, A and B, are distributed throughout a 
domain and are in motion.

• When they come in contact, they form a new species C.

• We can represent this by the chemical equation

.CBA 



Background: Chemical Kinetics

• Over time, concentrations of A and B will 
decrease at the same rate, and the rate of change 
of C will be the negative of this rate.



Background: Chemical Kinetics

• We can express the rate of change of concentrations 
of A, B, and C as a dynamical system:

rC

rB

rA













• Intuitively, the reaction rate r depends on the 
concentrations of A and B. 



Background: Chemical Kinetics

• In this simple example, it can be shown that 

kABr 

where the rate constant k must be determined 
experimentally. 



Background: Chemical Kinetics

• We will now extend this idea to more 
complicated reactions. Consider

The constants                          are called the 
stoichiometric coefficients of the reaction.

A and B are the reactants, C and D are the 
products.
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Background: Chemical Kinetics

• We can derive a dynamical system for this 
reaction using the Law of Mass Action.

• The Law of Mass Action states:

1) The reaction rate r is proportional to the product 
of the reactant concentrations, with each 
concentration raised to the power equal to its 
respective stoichiometric coefficient.

BkAr 



Background: Chemical Kinetics

2) The rate of change of the concentration of each 
species in the reaction is the product of its 
stoichiometric coefficient with the rate of the 
reaction, adjusted for sign (+ if product, - if 
reactant)
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Background: Chemical Kinetics

• Thus we arrive at the dynamical system

With known initial concentrations
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Modeling The BZ Reaction

• There are many variations on the BZ reaction recipe.

• The recipe that we will demonstrate later contains 
the following:

Solution Composition 

Solution A 0.23M Potassium bromate

Solution B 0.31M Malonic acid,
0.059M  Potassium bromide

Solution C 0.019M Cerium(IV) ammonium nitrate,
2.7M Sulfuric acid

Ferroin Indicator Solution



Modeling The BZ Reaction

• However, our analysis will concern the 
Oregonator, which is based on a slightly 
different recipe.

• The Oregonator is considered the simplest 
model of the BZ Reaction.

• The actual reaction mechanism is extremely 
complicated; some models have as many as 80 
steps and 26 variable species concentrations.



Modeling The BZ Reaction

• Let

• The Oregonator Scheme is then given by the series of 5 reactions:

(Note that the rate constants can 
be determined empirically).



Modeling The BZ Reaction

• Using the Law of Mass Action, we can derive the 
following dynamical system:

• We assume that initial concentrations are 
known.



Modeling The BZ Reaction

• Using nondimensionalization and some 
simplifying assumptions, we can reduce the 
system to: 

• Note that



Mathematical Analysis

• Taking                                                                 (based on 

empirical data using typical initial concentrations) yields 

• As always, the nullclines for this system will be given by 
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Mathematical Analysis

• We can graph the 
nullclines and use test 
points to find flow 
directions.

• Clearly, there is one 
positive fixed point  

• It can be shown this 
fixed point will exist for 
any 
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Mathematical Analysis

• Plotting a few 
trajectories reveals a 
stable limit cycle.

• Note that the fixed 
point is clearly 
unstable.



Mathematical Analysis

• A view of one 
trajectory with initial 
conditions close to 
(0,0).



Mathematical Analysis

• In fact, this system exhibits relaxation oscillations.



Mathematical Analysis

• Question:  What effect does varying initial 
concentrations have on the limit cycle?

• It turns out that this system has a Hopf Bifurcation:

▫ A Hopf Bifurcation is a qualitative change in the phase 
portrait that occurs as the real parts of eigenvalues of the 
Jacobian matrix for the system (evaluated at a fixed 
point) change from negative to positive.

▫ Assuming that q is fixed, we will find that the limit cycle 
will exist only for certain values of f and ε.



Mathematical Analysis

• For example, if we 
increase ε to 0.6 (and 
keep q and  f the 
same) then the limit 
cycle vanishes.

• Note that the fixed 
point is now stable.



Mathematical Analysis

What values of ε and f will produce oscillations?

1. Compute the positive fixed point              by 

solving the system                        to obtain
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Mathematical Analysis

2. Compute the Jacobian matrix for the system, 

evaluated at the fixed point:
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Mathematical Analysis

3. The critical value for ε will occur when the real 

part of the eigenvalues for the Jacobian matrix 
are equal to zero. This means the trace of the 
Jacobian will be zero. 
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Mathematical Analysis

4. We can graph this result in the ε-f plane to 

obtain a region in which oscillations will occur.
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