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Abstract. We consider two natural definitions for the no-
tion of a dynamical system being mixing relative to an in-
variant sub σ-algebra H. Both concern the convergence of

|E(f · g ◦ Tn|H)− E(f |H)E(g ◦ Tn|H)| → 0

as |n| → ∞ for appropriate f and g. The weaker condition
asks for convergence in L1 and the stronger for convergence
a.e. We will see that these are different conditions. Our goal
is to show that both these notions are robust. As is quite
standard we show that one need only consider g = f and
E(f |H) = 0, and in this case |E(f · f ◦ Tn|H)| → 0. We
will see rather easily that for L1 convergence it is enough
to check an L2-dense family. Our major result will be to
show the same is true for pointwise convergence making this
a verifiable condition. As an application we will see that
if T is mixing then for any ergodic S, S × T is relatively
mixing with respect to the first coordinate sub σ-algebra in
the pointwise sense.

1. Introduction

Mixing properties for ergodic measure preserving systems gener-
ally have versions “relative” to an invariant sub σ-algebra (factor
algebra). For most cases the fundamental theory for the abso-
lute case lifts to the relative case. For example one can say T is
relatively weakly mixing with respect to a factor algebra H if

1) L2(µ) has no finite dimensional invariant submodules over
the subspace of H-measurable functions, or
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2) T has no nontrivial factors containingH that are relatively
isometric over H, or

3) the 2-fold relatively independent self-joining of T is ergodic,
or

4) the 2-fold relatively independent joining of T with any er-
godic action having H as a factor is ergodic (see [4]).

A similar situation holds for the K-property in that the follow-
ing are all known to be equivalent:

1) T has H-relative trivial tail fields in that for any finite
partition P

∩∞j=0

(

∨∞n=jT
−n(P ) ∨H

)

= H.

2) T has no H relative Pinsker algebra, i.e. if h(T, P |H) = 0
then P ⊆ H.

3) An appropriately formulated version of H-relative uniform
multiple mixing holds (see [1] and [2]).

A similar situation holds for the Bernoulli property and is the
content of Thouvenot’s well known theory of relatively Bernoulli
actions (see [3]). In particular one has both anH-relatively finitely
determined and H-relatively very-weakly Bernoulli characteriza-
tion of those systems where the factor algebra H has a compli-
mentary factor on which the action is Bernoulli.

It is not surprising that the situation for mixing is murkier.
Studying this is the substance of our work here. What mixing
relative to a factor algebra H should say is that for any f and g

|E(f · g ◦ T n|H)− E(f |H)E(g ◦ T n|H)| → 0

as |n| → ∞. What is not clear is in what sense. We will show here
that two distinct sense are both reasonable, convergence in L1 and
convergence pointwise a.e. For L1-convergence it is natural to take
functions in L2. For convergence pointwise a.e. this may be true
but we cannot show it. Rather we work in a smaller Banach space
between L2 and L∞.

Definition 1.1. Set

L2,∞
H = {f : E(|f |2|H) ∈ L∞(µ)}.
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Notice that if H is trivial, this is L2 and if H is the full algebra,
it is L∞.

Setting ‖f‖H2,∞ = ‖E(|f |2|H)1/2‖∞ we turn L2,∞
H into a Banach

space.

The Rokhlin decomposition of µ over the factor H says we have
a family of fiber measures µx with

µ =

∫

µx dµ

and

E(f |H)(x) =

∫

f dµx.

Thus saying f ∈ L2,∞
H is just saying f ∈ L2(µx) for a.e. x and that

the L2(µx) norms of f are uniformly bounded in x. We will move
interchangebly between conditional probabilities (E(f |H)(x)) and
fiber measures (

∫

f dµx) in our calculations. When writing norms
or inner products we will add the measure in the subscript (e.g.
〈f, g〉µx or ‖f‖2,µx) to clarify the measure involved. To give an
example, the invariance of the measure µ and the factor H means
that

〈f, g〉µx = 〈f ◦ T−1, g ◦ T−1〉µT (x)

Definition 1.2. We say a measure preserving action T is L1-
relatively mixing w.r.t. a factor algebra H if as |n| → ∞,

‖E(f · g ◦ T n|H)− E(f |H)E(g ◦ T n|H)‖1 → 0

for all f and g in L2.

Definition 1.3. We say a measure preserving action T is pointwise-
relatively mixing w.r.t. a factor algebra H if as |n| → ∞,

|E(f · g ◦ T n|H)− E(f |H)E(g ◦ T n|H)| → 0

pointwise a.s. for all f and g in L2,∞
H .

As a first step let’s see that these are different notions. The
example is a “T, T−1” map where T is mixing. Let S be the shift
map on X = {−1, 1}Z with uniform Bernoulli measure. Let T
be some mixing action on a space (Y,G, ν). For ~x = {xi}∞i=−∞ ∈
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X and y ∈ Y set ̂T (~x, y) = (S(~x), T x0(y)). Let H be the first-
coordinate algebra.

Theorem 1.4. The map ̂T is L1- but not pointwise-mixing relative
to the factor H.

Proof. In proving this we will see that checking convergence on
a dense family of functions f and g is sufficient to show rel-

ative L1-mixing. Letting sn(~x) =
∑n−1

j=0 xj we get ̂T n(~x, y) =

(Sn(~x), T sn(x)(y)). Fix f, g ∈ L2 and 1/4 > ε > 0. W.l.o.g. we
assume ‖f‖2 = ‖g‖2 = 1. First find f 1, . . . , fk and g1, . . . , gk all in
L2(ν) and sets A1, . . . , Ak ⊆ X so that

‖
∑

i

χAi ⊗ f i − f‖2 < ε/10 and ‖
∑

i

χAi ⊗ gi − g‖2 < ε/10.

Now select N0 so that for all |n| ≥ N0 and all 1 ≤ i, j ≤ k,

∣

∣

∫

f i ⊗ gj ◦ T n −
∫

f i
∫

gj
∣

∣ < ε/10.

Select N so large that for all n ≥ N and Bn = {~x : |sn(~x)| <
N0}, µ(Bn) < ε/10.

Set f̄ =
∑

i χAi ⊗ f i and ḡ =
∑

j χAj ⊗ gj. Now for n ≥ N we
can calculate

∥

∥E(f · g ◦ ̂T n|H)− E(f |H)E(g ◦ ̂T n|H)
∥

∥

1
≤

∥

∥E(f̄ ·̄g ◦ ̂T n|H)− E(f̄ |H)E(ḡ ◦ ̂T n|H)
∥

∥

1
+

2‖f − f̄‖2‖ḡ‖2 + 2‖g − ḡ‖2‖f‖2 <
∥

∥E(f̄ ·̄g ◦ ̂T n|H)− E(f̄ |H)E(ḡ ◦ ̂T n|H)
∥

∥

1
+ ε/2.
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Now
∥

∥E(f̄ ·̄g ◦ ̂T n|H)− E(f̄ |H)E(ḡ ◦ ̂T n|H)
∥

∥

1
=

∑

1≤i,j≤k

(

∫

Ai∩S−n(Aj)

∣

∣

∫

f̄ i ·̄gj ◦ T sn(~x)

−
∫

f̄ i
∫

ḡj ◦ T sn(~x)
∣

∣ dµ(~x)
)

≤
∑

1≤i,j≤k

(

∫

Ai∩S−n(Aj)∩Bcn

∣

∣

∫

f̄ i · ḡj ◦ T sn(~x)

−
∫

f̄ i
∫

ḡj ◦ T sn(~x)
∣

∣ dµ(~x)
)

+ ε/4 ≤

ε/10 + ε/4 < ε/8.

Thus ̂T is L1-mixing relative to H.
On the other hand for µ-a.e. ~x there exists infinitely many values

ni where sni(~x) = 0 as the standard symmetric random walk on Z
is recurrent. At such values ni,
∣

∣E(f · g ◦ ̂T ni|H)(~x)− E(f |H)(~x)E(g ◦ ̂T ni|H)(~x)
∣

∣ =
∣

∣E(f · g|H)(~x)− E(f |H)(~x)E(g|H)(~x)|
which of course need not be zero. �

We have seen now that there do indeed exist actions which are
L1-mixing relative to a nontrivial factor algebra. The proof of
Theorem 1.4 shows that in fact it is sufficient to check L1 mixing
relative to a factor by checking it on a dense subset of functions
and in particular a dense set of piecewise constant functions of the
form

∑

i χAi ⊗ f i where the Ai are measurable with respect to H
and the f i are measurable w.r.t. a second coordinate. Hence one
can see that if T is mixing than any S×T is L1-mixing relative to
its first coordinate algebra. What is not at all evident at this point
is that there exist any actions that are pointwise-mixing relative
to a nontrivial factor algebra. We are now ready to begin our work
to show that indeed not only do such actions exist but it is as easy
to verify it as it is for the L1-notion in that verifying it on a dense
family is sufficient.
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2. Reducing to just one function

We now show that for both the L1 and pointwise notions it is
sufficient to show that functions mix against themselves. Notice
that forHmeasurable functions, one always hasH-relative mixing.
These functions play the role of constants. Also notice that the
set of functions on which the appropriate limits hold for relative
mixing is closed under linear combinations. Hence it is enough to
verify the limits for those f and g whose conditional expectations
are zero.

Definition 2.1. Set E2 = {f ∈ L2 : E(f |H) = 0} and E2,∞ =
{f ∈ L2,∞

H : E(f |H) = 0}.

Corollary 2.2. A map T is L1-mixing relative to H iff for all
f, g ∈ E2, E(f · g ◦ T n|H) → 0 in L1 and is pointwise-mixing
relative to H iff for all f, g ∈ E2,∞, E(f · g ◦T n|H)→ 0 pointwise
a.s.

Definition 2.3. We say f ∈ E2 (or E2,∞) is L1- (or pointwise)-
self-mixing relative to a factor H if as |n| → ∞ we have E(f · f ◦
T n|H)→ 0 in L1 (or pointwise).

Our goal now is to show that if all f are self-mixing relative to
H then T is mixing relative to H either in L1 or pointwise. We
then want to see that just checking an L2 dense family, in either
case, is sufficient.

All our work is based on the standard trick that one function
cannot be dependent of all terms in a series of independent func-
tions. We start with the simplest lemma and walk through the
complete argument to (re)familiarize the reader with it.

Theorem 2.4. Suppose f ∈ E2 and

lim
|n|→∞

‖E(f · f ◦ T n|H)‖1 = 0.

Then for all g ∈ L2 we have

lim
|n|→∞

‖E(g · f ◦ T n|H)‖1 = 0.
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Proof. Suppose not, i.e. there is a g ∈ L2 with ni ↗ ∞ and
1 > a > 0 for which

‖E(g · f ◦ T ni|H)‖1 > a.

W.l.o.g. we can assume that for all i 6= j we have

‖E(f · f ◦ T nj−ni|H)‖1 <
a2

2‖g‖2
2

by dropping to a subsequence of the ni.
Let hi = signumE(g · f ◦ T ni|H) which is an H measurable

functions. Now for all i,
∫

E(hi · g · f ◦ T ni|H) > a.

Thus

Ia <

∫

E(
I
∑

i=1

hi · g · f ◦ T ni|H)

≤
∫

(

E((
I
∑

i=1

hi · f ◦ T ni)2|H)E(g2|H)

)1/2

≤

(

∫

E((
I
∑

i=1

hi · f ◦ T ni)2|H)

)1/2
(∫

E(g2|H)

)1/2

=

(

∑

1≤i,j≤I

∫

(

hi ◦ T−ni hj ◦ T ni
)

E(f · f ◦ T nj−ni|H)

)1/2

‖g‖2

≤

(

∑

1≤i,j≤I

‖E(f · f ◦ T nj−ni|H)‖1

)1/2

‖g‖2

≤
(

I‖f‖2
2 + I2 a2

2‖g‖2
2

)1/2

‖g‖2 ≤
√
I‖f‖2‖g‖2 +

Ia

2
.

Once I is large enough Ia ≤
√
I‖f‖2‖g‖2 +

Ia

2
cannot hold. �
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Corollary 2.5. For a measure preserving map T , if there is a
dense family of functions f in L2 which are L1-self-mixing relative
to a factor algebra H then T is L1-mixing relative to H.

We now obtain a result parallel to Theorem 2.4 for pointwise-
mixing relative to a factor.

Theorem 2.6. Suppose f ∈ E2,∞ and E(f · f ◦T n|H)→ 0 point-
wise a.e. Then for all g ∈ L2,∞

H we have E(g · f ◦ T n|H) → 0
pointwise a.e.

Proof. Following the pattern set above, suppose this is not true.
That is to say there is a g ∈ L2,∞

H an a > 0, and a set B ⊂ X with
µ(B) > a and for x ∈ B there are ni = ni(x)↗∞ with

|E(g · f ◦ T ni|H)(x)| > a.

W.l.o.g. we can assume E(g ·f ◦T ni|H)(x) > a by taking a subset
of B where this value is of one sign infinitely often, taking this
subsequence and replacing g with −g if necessary.

For a.e. x ∈ B we can write

E(g · f ◦ T n|H)(x) =

∫

g · f ◦ T n dµx

where µx is the fiber measure of the factorH at the point x. Refine
the sequence ni(x) inductively for a.e. x so that the successive gaps
are large enough that for any |m| ≥ ni+1(x)− ni(x) we will have

E(f · f ◦ Tm|H)(T ni(x)) =

∫

f · f ◦ Tm dµTni (x) <
a2

2
(

‖g‖H2,∞
)2 .
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Once more following the template of the previous theorem, for
a.e. x ∈ B we calculate

Ia < E

(

I
∑

i=1

g · f ◦ T ni|H

)

(x)

≤ E









(

I
∑

i=1

f ◦ T ni
)2

|H



 (x)





1/2

‖g‖2,µx

≤

(

I
∑

i=1

‖f‖2
2,µTni (x)

+
∑

i6=j

E(f ◦ T ni f ◦ T nj |H)(x)

)1/2

‖g‖H2,∞

≤

(

I
(

‖f‖H2,∞
)2

+
∑

i6=j

∫

f f ◦ T nj−ni dµTni (x)

)1/2

‖g‖H2,∞

≤
√
I ‖f‖H2,∞‖g‖H2,∞ +

Ia

2
.

Once I is large enough this cannot hold. �

Corollary 2.7. If for all f ∈ E2,∞, f is pointwise-self-mixing
relative to the factor algebra H then T is pointwise-mixing relative
to H.

3. Pointwise self-mixing on an L2 dense family is
enough

To demonstrate pointwise-mixing relative to a factor algebra
H it is enough to check pointwise-self-mixing for functions in the
L2,∞
H unit ball B1 of E2,∞. This unit ball is closed in L2 as the

L2 limit of a sequence of uniformly bounded functions will possess
the same bound a.s. Our goal now is to show that the subset of
functions in B1 which are pointwise-self-mixing are closed in L2.
Hence to demonstrate pointwise-mixing relative to H it will be
sufficient to prove pointwise-self-mixing on an L2-dense subset of
B1.

As we continue we assume that f ∈ B1 ⊆ E2,∞ is fixed. We
investigate the failure of f to be pointwise-self-mixing relative to
H.
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Definition 3.1. We say a point x ∈ X is a-bad if there are ni =
ni(x), |ni| ↗ ∞ with

|E(f · f ◦ T ni|H)(x)| = |〈f, f ◦ T ni〉µx| > a.

To say that f is not pointwise-self-mixing relative to H is to say
that for some a > 0 the set of a-bad points has positive measure.
Notice that for fixed a the values ni(x) can be chosen measurably.

Definition 3.2. We say a set B ⊆ X, µ(B) > 0 is a-very bad if
for a.e. x ∈ B there are ni = ni(x), |ni| ↗ ∞ with

i) T ni(x) ∈ B and
ii) |〈f, f ◦ T ni〉µx| > a.

Note that on an a-very bad set B the values ni(x) can be chosen
measurably.

Definition 3.3. We say a set B ⊆ X, µ(B) > 0 is a-terrible if
any subset B′ ⊆ B of positive measure is a-very bad.

Our goal is the following result:

Theorem 3.4. If f ∈ B1 ⊆ E2,∞ is not pointwise-self-mixing
relative to a factor algebra H then for some a > 0 there is an
a-terrible set B ⊆ X, µ(B) > 0.

Before completing the proof of Theorem 3.4 we show how this
implies that the pointwise-self-mixing functions in B1 are L2-closed.

Corollary 3.5. Suppose fi ∈ B1 ⊆ E2,∞ and each fi is pointwise-
self-mixing relative to H. Moreover suppose fi → f in L2. Then
f is also pointwise-self-mixing relative to H.

Proof. As all the fi ∈ B1 so is f . Now suppose f is not pointwise-
self-mixing. Then for some value a > 0 there is an a-terrible set
B of positive measure. Choose i so large that

µ(B ∩ {x : ‖f − fi‖2,µx < a/4}) > 0.

Now set B′ = B∩{x : ‖f−fi‖2,µx < a/4} and B′ will be an a-very
bad set. Thus for a.e. x ∈ B′ there are nj = nj(x) with |nj| ↗ ∞
and both

i) T nj(x)(x) ∈ B′ and
ii) 〈f, f ◦ T nj〉µx > a.



Relative Mixing 11

But now for a.e. x ∈ B′ we obtain the following conflict.

a ≤ lim sup
j
|〈f, f ◦ T nj〉µx − 〈fi, fi ◦ T nj〉µx|

= lim sup
j
|〈f − fi, f ◦ T nj〉µx + 〈fi, (f − fi) ◦ T nj〉µx|

≤ lim sup
j

(

‖f − fi‖2,µx‖f‖2,µ
T
nj (x)

+ ‖f − fi‖2,µ
T
nj (x)
‖fi‖2,µx

)

≤a/2 as both x and T nj(x) are in B′.

�

We now set about proving Theorem 3.4. At the core of this
argument is the same basic trick we have used twice before. We
begin with some definitions.

Definition 3.6. We say a set G is c-good if for all x ∈ G,

{n 6= 0 : T n(x) ∈ G and |〈f, f ◦ T n〉µx| ≥ c}
is a finite set. We say G is c-very good if for all x ∈ G this set of
integers is empty.

Lemma 3.7. Any subset of a c-good set is c-good and any c-good
set can be partitioned into a countable collection of c-very good
sets.

Proof. The first statement is clear. As

{n 6= 0 : T n(x) ∈ G and |〈f, f ◦ T n〉µx| ≥ c}
is finite for x ∈ G it is bounded. Partition G first according
to this bound b, writing G = ∪∞b=1Gb. Now, using the Rokhlin
Lemma, one can partition each Gb into subsets which never recur
to themselves in time ≤ b. This provides the desired partition. �

Lemma 3.8. If X contains no c-terrible set then X can be parti-
tioned into a countable collection of c-good sets and hence into a
countable collection of c-very good sets.

Proof. If a set A is not very bad then the set

A′ = {x ∈ A : #{n 6= 0 : T n(x) ∈ A and |〈f, f◦T n〉µx| ≥ c} <∞}
has positive measure. It follows that the set A′ must be c-good.
Thus if X has no c-terrible subsets, any subset of X of positive
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measure must contain a c-good subset of positive measure. One
now obtains the desired partition by exhaustion. �

We now make another application of the basic trick.

Lemma 3.9. Suppose G is a2/4-very good. Then for a.e. x ∈ X,

{n : T n(x) ∈ G and |〈f, f ◦ T n〉µx| > a}

has cardinality at most 8/a2.

Proof. Suppose T n1(x), . . . , T nI (x) ∈ G and |〈f, f ◦T ni〉µx| > a for
all i. Assume in addition that all the values 〈f, f ◦ T ni〉µx are of
the same sign. We compute

Ia < |〈f,
I
∑

i=1

f ◦ T ni〉µx|

≤ ‖f‖2,µx

( I
∑

i=1

‖f‖2
2,µTni (x)

+
∑

i6=j

〈f ◦ T ni , f ◦ T nj〉µx
)1/2

≤
(

I + I2a
2

4

)1/2 ≤
√
I + I

a

2
.

This cannot hold once I >
4

a2
. Among any collection of

8

a2
values

ni a collection of half of them must be of the same sign. �

The next proposition will complete the proof of Theorem 3.4.

Proposition 3.10. Let T an ergodic action, H an invariant factor
algebra and f ∈ B1 ⊆ E2,∞. If X contains no a2/4-terrible set of
positive measure then the set of a-bad points in X has measure
zero.

Proof. As X has no a2/4 terrible sets, we can partition X into
G1, G2, . . . where each Gi is an a2/4-very good set. Now suppose
that x is an a-bad point, i.e. there are ni = ni(x) with |ni| ↗ ∞
and |〈f, f ◦ T ni〉µx| > a. Lemma 3.9 tells us that at most 8/a2 of
the T ni(x) can belong to any particular Gj. We conclude that for
each a-bad point x the orbit points T ni(x)(x) must become ever
more concentrated in the tail of the sequence of sets Gj.
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To continue we argue by contradiction. That is to say assume B
is a set of a-bad points with µ(B) > 0 and w.l.o.g. we will assume
that B ⊆ G1. (The set of a bad points must intersect some Gj and
we can relabel it to be the first and restrict to the intersection.)

Select a value N so that

µ(∪∞j=NGj) <
a2

8
µ(B).

We know that for each x ∈ B there must be an n(x) with

|〈f, f ◦ T n(x)〉µx| > a and
T n(x) ∈ ∪∞j=NGj.

The value n(x) can be chosen measurably and so we can partition
B as ∪nBn where Bn = {x ∈ B : n(x) = n}.

Now note that for each Bn the map T n : Bn → ∪∞j=NGj is 1-1

and measure preserving. As µ(B) >
8

a2
µ(∪∞j=NGj), there must be

L > 8/a2 points x1, x2, . . . xL ∈ B ⊆ G1 where all the T n(xi)(xi)
are identical, i.e. equal to some x0 ∈ ∪∞j=NGj. But this then gives

us one point x0 with L > 8/a2 images xi = T−n(xi)(x0) all in the
same G1 and with

|〈f, f ◦ T−n(xi)〉µx0
| > a

which we saw was impossible. �

4. Conclusions

We can now discuss the general class of cocycle extensions, of
which T, T−1 maps are an example. We begin with the stan-
dard description. Let S and T be measure preserving and er-
godic transformations of (X,F , µ) and (Y,G, ν) respectively. For
any function n : X → Z we can construct the cocycle extension
Sn : X × Y → X × Y by setting Sn(x, y) = (S(x), T n(x)(y)). Both
the T, T−1 maps and direct products are of this form.

Suppose now that T is mixing and let H be the first coordinate
algebra F . We want to understand in generality when Sn is L1-
and pointwise-relatively mixing w.r.t. H. We can so long as n is
integrable.
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As is usual, let n(i, x) be the cocycle generated by n so that
Sjn(x, y) = (Sj(x), T n(i,x)(y)). Whether or not Sn is relatively mix-
ing now depends on the distribution of the functions n(i, x) for i
large.

Definition 4.1. We say the cocycle n(i, x) “spreads in the mean”
if for all N > 0

lim
i→∞

µ({x : |n(i, x)| < N}) = 0.

We say the cocycle n(i, x) “spreads pointwise” if

lim
i→∞
|n(i, x)| =∞ a.e.

The proof that T, T−1 actions are L1-mixing relative to H ap-
plies to any Sn where the cocycle spreads in the mean. We now
know that to check pointwise-relative mixing it is sufficient to
check an L2 dense family in B1, in particular to check it on func-
tions of the form

∑

i χAi ⊗ fi as are used in the discussion of
T, T−1-maps. We can thus apply that argument to show that if the
cocycle n spreads pointwise then Sn is pointwise-relative mixing
w.r.t. the first coordinate algebra. We now pull all this together.

Proposition 4.2. Suppose S and T are as above. Suppose n :
X → Z is in L1(µ).

a) If
∫

n dµ 6= 0 then Sn is pointwise-relative mixing with re-
spect to its first coordinate algebra. In particular S × T is
pointwise-relative mixing with respect to the first coordinate
algebra.

b) If
∫

n dµ = 0 and the cocycle generated by n spreads in
the mean then Sn is L1- but not pointwise-relative mixing
w.r.t. its first coordinate algebra.

c) If n generates a cocycle that does not spread in the mean
then Sn is not L1-relatively mixing w.r.t. its first coordinate
algebra.

Proof. Statement a) follows from the ergodic theorem in that if
n is not of mean zero then the cocycle it generates will spread
pointwise. Statement b) is just a general version of the T, T−1

argument given in the introduction once one knows that any mean
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zero n will generate a recurrent cocycle. The proof of c) is quite
simple and we leave it to the reader. �

We leave it now to the reader to explore more general cocycle
extensions. Certainly there is no problem applying these methods
to extensions by larger abelian groups of mixing actions.

A significant motivation for understanding properties relative
to an invariant factor H is to use the orbit transference method
of [2] to lift results from actions of Z to general discrete amenable
actions. For this method to work whatever properties of an action
are under discussion must have relative versions and these relative
versions must be invariant underH-measurable orbit equivalences.
To clarify the picture we state a result that one would wish to prove
for general amenable actions. Is it the case that a weakly mixing
isometric extension of a mixing action must be mixing? This is
known to be true for Z actions. Moreover the Z proof does not
seem to lift to the amenable case. To apply orbit transference
to this question one would need to know a relativized version of
this result but only for Z actions. One must ask whether an H-
relatively weakly mixing H-relatively isometric extension of an
H-relatively mixing action remains H-relatively mixing. We have
explicitely avoided indicating which type of relative mixing we
mean. This question is meaningful for both L1- and pointwise-
relative mixing. Only the pointwise version though would be useful
for the orbit transference method. We will show elsewhere that
in fact L1-relative mixing w.r.t. a factor H is not invariant under
H-measurable orbit equivalences. The pointwise notion obviously
is. Hence it is necessary to verify the above relativized result on
isometric extensions for pointwise-relative mixing. Again to apply
the transference method one must know that if T has an absolute
property, then S × T has the relative property w.r.t. the first
coordinate algebra. We have settled this piece of the problem
here. It appears the above relativized result can be proven for
pointwise-mixing relative to H, giving all the pieces to settle the
problem. This work will appear elsewhere if it is in fact correct.
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