M417, Fall 2009, Second hourly exam

This is a closed book, closed notes exam. Show all your work. For full credit you must show complete arguments.

Prob. 1 (30 pts)
Define f in \mathbb{R}^{2} by

$$
f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}
$$

Find all critical points of f and determine whether they are local minima, maxima or saddle points.

Prob. 2 (35 pts)
A surface Σ in \mathbb{R}^{3} is given parametrically as the image of the map

$$
F(s, t)=\left(s+t, t^{2}, t^{3}\right)
$$

a) Show that F is one-to-one.
b) At what points $(a, b, c)=F\left(s_{0}, t_{0}\right)$ of the surface can you guarantee that in a neighborhood of $(a, b, c), \Sigma$ is a smooth surface?
c) Find a nonzero vector \vec{n} perpendicular to the surface at such a point (a, b, c).

Prob. 3 (35 pts)
Use the Taylor series for $\sin (x)$ and $\cos (x)$ to find the value c for which

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x \cos (x)-c x^{3}}{x^{5}}
$$

exists. For this value of c evaluate the limit. Be sure to justify your work. No credit will be give for using L'hôpital's rule.

