M417, Fall 2008, Second hourly exam

This is a closed book, closed notes exam. Show all your work. For full credit you must show complete arguments.

Prob. 1 (30 pts)
Find the extreme values of $f(x, y)=3 x^{2}-2 y^{2}+2 y$ on the set $S=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Prob. 2 (35 pts)

$2 y$
a) Show that the pair of equations $x y+2 y^{2}-3 x z=0$ and $x y z+x-\mathbf{x}=0$ can be solved for x and y as C^{1} functions of z near the point $(1,1,1)$.
b) If we let $x=f(z)$ and $y=g(z)$ be these solutions what are $f^{\prime}(1)$ and $g^{\prime}(1)$?

Prob. 3 (35 pts)
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b). Moreover suppose there is a bound B and for all $x \in(a, b),\left|f^{\prime}(x)\right|<B$.

Recall that for any partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$,

$$
\operatorname{mesh}(P)=\max \left(\left(x_{i}-x_{i-1}\right), i=1, \ldots, n\right)
$$

Prove that for all partitions P of $[a, b]$ that

$$
\begin{aligned}
& \bar{S}_{P}(f)-\underline{S}_{P}(f) \leq B(b-a) \operatorname{mesh}(P) \cdot / / \\
& \bar{S}_{p}(f)-\underline{S}_{p}(f)=\sum_{i=1}^{m}\left(M_{i}-m_{i}\right) \underline{\left.\underline{l\left(I_{i}\right.}\right)} \\
& \leqslant \text { mesh } \cdot \sum_{i=1}^{\sum_{l} l\left(I_{i}\right)}=\sum_{i=1}^{n}\left(\overline{f\left(a_{i}\right)}-f\left(b_{i}\right)\right) l\left(I_{i}\right) \\
& M \vee 7^{i=1}-\left|f\left(a_{i}\right)-f\left(b_{j}\right)\right| \\
& =\mid f^{\prime}\left(c_{i}\right)\left(a_{i}-b_{i} \mid\right) \\
& \begin{aligned}
&\left.\leq B l(T)^{\prime}\right) \\
& \bar{S}_{p}(f)-\underline{S}_{p}(f) \leq B \sum_{i=1}^{\hat{S}}\left(I_{i} \dot{S} \cdot l\left(I_{i}\right)\right. \\
& S_{\operatorname{men}}(x b-a)
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{r}
3 x^{2}-2 y^{2}+2 y \\
\left(x^{2}+y^{2}\right) \leq 1
\end{array}
$$

Cowsider

$$
\frac{x^{2}+y^{2}<1}{c+y} \quad a+c
$$

$$
\begin{aligned}
& \partial_{x} f=6>=0 \\
& \partial_{z} f=-4 y+2=0 \\
& x=0 \\
& y=\frac{1}{2} \\
& x^{2}+y^{2}=1 \\
& \gamma(x)=(\cos t, \sin t) \\
& g(x)-f(\gamma(x)) \\
& =3 \cos ^{2} x-2 \sin ^{2} x+2 \sin x \text {. } \\
& g^{\prime}(A)=-6 \cos t \sin t-4 \cos t \sin x \\
& +2 \cos t \\
& 2 \cos x-10 \cos t \sin t=0 \\
& \cos x(2-10 \sin x)=0
\end{aligned}
$$

$$
\begin{aligned}
& \cos t=0 \\
& \sin t=\frac{2}{10} \\
& (0,1),(0,-1) \\
& \left(\frac{4 \sqrt{6}}{10}, \frac{2}{10}\right),\left(\frac{11 \sqrt{6}}{10}, 2 \frac{2}{10}\right),(0,12) \\
& y= \pm \sqrt{1-\frac{4}{100}}=\frac{4 \sqrt{5}}{10} \\
& \text { FVa?. } 5 \mathrm{ral} \mathrm{lams}_{\mathrm{s}} \\
& \text { * take max amiv. }
\end{aligned}
$$

$$
\begin{aligned}
& x y+2 y^{2}-3 x z=0 \\
& p x y z+x-2 y=0 \\
& x \not \partial \text { asfcte of } z \text {. } \\
& G(x, y, z), a^{-1}(1,1,1) \\
& \left.\begin{array}{|cc|c}
{\left[\begin{array}{cc}
-2 & 5 \\
2, & -1 \\
9 & -3 \\
9
\end{array}\right]}
\end{array} \begin{array}{cc}
-2 & 5 \\
2 & -1
\end{array}\right]^{-1} \\
& \text { weed wonzero }=\left[\begin{array}{ll}
-1 & -5 \\
-2 & -2
\end{array}\right] \\
& \text { dey } \\
& \text { it is }-8 \\
& =\left[\begin{array}{cc}
1 / 8 & 5 / 8 \\
1 / 4 & 1 / 4
\end{array}\right] \\
& \text { in a wghd of }(1,1,1) \\
& (x, y) \text { can be fourd } \\
& \text { es } c^{\prime}-f_{c}+\sim s \text {. } f Z \text {. }
\end{aligned}
$$

Let, them be $f(z), g(z)$

$$
\binom{f^{\prime}(1,)}{g^{\prime}(1)}=-B^{-1} A
$$

$$
\begin{aligned}
\binom{f^{\prime}(1)}{g^{\prime}(1)} & =-\left[\begin{array}{cc}
1 / 8 & 5 / 8 \\
1 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \\
& =\binom{-1 / 4}{1 / 2}
\end{aligned}
$$

