M417, Fall 2008, First hourly exam

This is a closed book, closed notes exam. Show all your work. For full credit you must show complete arguments.

Prob. 1 (30 pts)
Define a sequence $\left\{x_{k}\right\}$ recursively by $x_{1}=\sqrt{2}, x_{k+1}=\sqrt{2+x_{k}}$. Show by induction that (a) $x_{k}<2$ and (b) $x_{k}<x_{k+1}$ for all k. Then show that $\lim x_{k}$ exists and evaluate it.

Prob. 2 (35 pts)
For $S \subseteq \mathbb{R}^{n}$ we define the diameter of S to be

$$
\operatorname{dia}(S)=\sup (|x-y|: x, y \in S)
$$

Notice that this value could be ∞.
a. Prove that if $\operatorname{dia}(S)<\infty$ then S is bounded.
b. Prove that if $K \subseteq \mathbb{R}^{n}$ is compact and nonempty then there must be points $x_{0}, y_{0} \in K$ for which

$$
\operatorname{dia}(K)=\left|x_{0}-y_{0}\right|
$$

Prob. 3 (35 pts)
The set $S=\left\{(x, y, z): 2 x^{2}+y^{2}+z^{2}-4=0\right\}$ is an ellipsoid centered at the origin.
a. Find the two points where the curve $\gamma(t)=\left(t^{2}, t, t\right)$ intersects this ellipsoid.
b. Show that at these two points the tangent vector to the curve is orthogonal to the tangent plane to the ellipsoid.

