Advanced Analysis (Math 417) Exam 1

Name:
March 14, 2008

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right)+y^{2} \sin \left(\frac{1}{y}\right) & \text { if } x y \neq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \text { and } y=0 \\ y^{2} \sin \left(\frac{1}{y}\right) & \text { if } x=0 \text { and } y \neq 0 \\ 0 & \text { if } x=0 \text { and } y=0\end{cases}
$$

(a) Prove or disprove: f is differentiable at $\mathbf{0}=(0,0)$.
(b) Prove or disprove: f is of class C^{1} on an open neighborhood of $\mathbf{0}$.
2. Consider the following assertion:

Suppose f is of class C^{2} on an open subset of \mathbb{R}^{2} containing $\mathbf{0}$, and that $\nabla f(\mathbf{0})=\mathbf{0}$. Then f has either a local maximum or a local minimum at $\mathbf{0}$.
(a) Disprove the assertion with a counterexample.
(b) Add one more hypothesis to make the assertion true (no proof required).
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be of class C^{k+1} on \mathbb{R}^{n}, and $\mathbf{a} \in \mathbb{R}^{n}$. Suppose $\partial^{\alpha} f(\mathbf{a})=0$ for all $|\alpha|=k+1$. Use the fact that

$$
R_{\mathbf{a}, k}(\mathbf{h})=(k+1) \sum_{|\alpha|=k+1} \frac{\mathbf{h}^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{k} \partial^{\alpha} f(\mathbf{a}+t \mathbf{h}) d t
$$

to prove that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{R_{\mathbf{a}, k}(\mathbf{h})}{\|\mathbf{h}\|^{k+1}}=0 .
$$

