Project 3: The Snake Lemma and the Long Exact Sequence in Homology

Renzo’s math 571

February 17, 2010

This project develops a fundamental homological algebra tool for us: short exact sequences of complexes give rise to long exact sequences in homology. When this tool is applied in a geometric context, it allows to relate various homology groups.

The main statement we want to prove is the following.

Theorem 1. Let

\[0 \to A_\bullet \overset{f}{\to} B_\bullet \overset{g}{\to} C_\bullet \to 0 \quad (1) \]

be a short exact sequence of complexes of abelian groups (or \(R \)-modules, if you prefer, with \(R \) a commutative group). This induces a long exact sequence in homology:

\[\ldots \to H_k(A_\bullet) \overset{f_*}{\to} H_k(B_\bullet) \overset{g_*}{\to} H_k(C_\bullet) \overset{\delta}{\to} H_{k-1}(A_\bullet) \to \ldots \quad (2) \]

The key ingredient for the proof is to define the connecting homomorphism \(\delta \).

Problem 1 (Snake Lemma). Given (1), there is a canonical way to define a group homomorphism:

\[\delta_k : H_k(C_\bullet) \to H_{k-1}(A_\bullet) \]

Given an element \(c \in \ker \partial \subseteq C_n \), obtain in a natural way an element \(a \in A_{n-1} \). This is not a function, but rather a correspondence, since you can obtain different \(a \)'s starting from the same \(c \). However show that this correspondence induces a well defined function at the level of homology. There are a few things to show here:

1. \(a \in \ker \partial \)
2. any two \(a \)'s that you may associate to the same \(c \) differ by a boundary, and therefore represent the same homology class.
3. if c is a boundary, then the associated homology class a is the zero class.

Problem 2. Having defined the connecting homomorphism, now you need to show that the sequence (2) is exact.

There are six things to check:

1. $\text{Im}(f_*) \subseteq \text{Ker}(g_*)(\text{aka } g_*f_* = 0)$.
2. $\text{Im}(f_*) \supseteq \text{Ker}(g_*)$.
3. $\text{Im}(g_*) \subseteq \text{Ker}(\delta_*)(\text{aka } \delta g_* = 0)$.
4. $\text{Im}(g_*) \supseteq \text{Ker}(\delta_*)$.
5. $\text{Im}(\delta) \subseteq \text{Ker}(f_*)(\text{aka } f_*\delta = 0)$.
6. $\text{Im}(\delta) \supseteq \text{Ker}(f_*)$.