
K-Theory 12: 3–21, 1997. 3
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Orbifolds, Sheaves and Groupoids

Dedicated to the memory of Bob Thomason

I. MOERDIJK and D. A. PRONK
Mathematical Institute, University of Utrecht, The Netherlands
e-mail: moerdijk@math.ruu.nl.

(Received: December 1995)

Abstract. We characterize orbifolds in terms of their sheaves, and show that orbifolds correspond
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The purpose of this paper is to give a characterization of orbifolds, or V -manifolds
(Satake [15] and [16], Thurston [18]) in terms of their sheaves. A smooth manifold
is completely determined by all its sheaves, with the smooth structure given by
the particular sheaf of germs of smooth functions. We will show that an analogous
result is true for orbifolds, and we characterize in various ways the categories of
sheaves that so arise (Theorem 4.1 below). One such characterization is in terms
of smooth groupoids (Connes [2, Def. II.5.2]). Each such groupoid G determines
a category of G-equivariant sheaves. We prove that this is the category of sheaves
on some (uniquely determined) orbifold iff G is a groupoid of germs of diffeo-
morphisms with the property that the source and target maps of G jointly define
a proper map (s; t):G1 ! G0 � G0. (Here G0 and G1 denote the spaces of
objects and arrows of the groupoid.) Conversely, we construct for any orbifold
such a groupoid G determining the same category of sheaves. This result shows
that orbifolds are essentially the same as such ‘proper’ groupoids. (One can also
easily reformulate this condition in terms of structures close to groupoids, such as
pseudogroups [18, Def. 3.1.1] or S-atlases [3].) For a precise formulation and other
such characterizations, we refer to Theorem 4.1 below.

These characterizations naturally lead to various applications. For example,
using mappings between groupoids, we will show in Section 5 that one can construct
fibered products of orbifolds in terms of ‘proper’ groupoids, and we prove a change-
of-base formula for the sheaf cohomology of orbifolds, for fibered products along
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4 I. MOERDIJK AND D. A. PRONK

proper maps between orbifolds. Further applications will be described in a sequel
[11] to this paper. Among other things, we will show that for an orbifoldM and
corresponding (i.e., having the same sheaves) groupoidG, the sheaf cohomology of
Mwith locally constant coefficients agrees with the ordinary (twisted) cohomology
of the classifying space BG. It will also be shown that the fundamental group of
an orbifoldM (as defined in [18, Def. 5.3.5]) is isomorphic to the Grothendieck
fundamental group of locally constant sheaves onM, and to the fundamental group
of G as an S-atlas [3], and to the ordinary fundamental group of the classifying
spaceBG.

1. Orbifolds

In this section we briefly review the basic definitions concerning orbifolds, also
called V -manifolds or Satake manifolds (Satake [15], [16], or Thurston [18]).

Let M be a space. Fix n > 0. An orbifold chart on M is given by a connected
open subset ~U � R

n , a finite group G of C1-automorphisms of ~U , and a map
': ~U ! M , so that ' is G-invariant (' � g = ' for all g 2 G) and induces a
homeomorphism of ~U=G onto an open subset U = '( ~U ) of M . An embedding
�: ( ~U;G;') ,! ( ~V ;H; ) between two such charts is a smooth embedding�: ~U !
~V with  � � = '. An orbifold atlas on M is a family U = f( ~U;G;')g of such
charts, which cover M and are locally compatible in the following sense: given
any two charts ( ~U;G;') for U = '( ~U ) � M and ( ~V ;H; ) for V � M , and a
point x 2 U \ V , there exists an open neighbourhood W � U \ V of x and a
chart ( ~W;K;�) for W such that there are embeddings ( ~W;K;�) ,! ( ~U;G;')
and ( ~W;K;�) ,! ( ~V ;H; ). Two such atlases are said to be equivalent if they
have a common refinement (where an atlas U is said to refine V if for every chart in
U there exists an embedding into some chart of V). An orbifold (of dimension n) is
a paracompact Hausdorff spaceM equipped with an equivalence class of orbifold
atlases.

Remarks. (1) Every orbifold atlas for M is contained in a unique maximal one,
and two orbifold atlases are equivalent if and only if they are contained in the same
maximal one. Therefore we shall often tacitly work with a maximal atlas.

(2) Note that for a chart ( ~U;G;'), the set of non-fixed points of g: ~U ! ~U ,
1 6= g 2 G, is dense in ~U . (Indeed, a nontrivial automorphism of the connected set
~U of finite order cannot fix a nonempty open set.)

(3) For two embeddings � and �: ( ~U;G;') � ( ~V ;H; ) there exists a unique
h 2 H so that � = h � �. In particular, since each g 2 G can be viewed as an
embedding of ( ~U;G;') into itself, for the two embeddings � and � � g there exists
a unique h 2 H so that � � g = h � �. This h will be denoted �(g). In this way,
the map �: ~U ! ~V induces an injective group homomorphism �:G ,! H . This is
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ORBIFOLDS, SHEAVES AND GROUPOIDS 5

proved in [16, Lem. 1] when the fixed point set is of codimension at least two. For
the general case, see the Appendix.

(4) Let �: ( ~U;G;') ,! ( ~V ;H; ) be an embedding. If h 2 H is such that
�( ~U) \ h � �( ~U) 6= ;, then h belongs to the image of the group homomorphism
�:G ,! H just described (and hence �( ~U) = h � �( ~U)). Again this is proved in
[16] when the fixed point set is of codimension at least two. It is easily seen to hold
without this condition; see the Appendix.

(5) By the differentiable slice theorem for smooth group actions (see [9]), any
orbifold has an atlas consisting of ‘linear charts’, i.e. charts of the form (Rn ; G)
where G is a finite group of linear transformations of Rn .

(6) If ( ~U;G;') and ( ~V ;H; ) are two charts for the same orbifold structure
on M , and ~U is simply connected, then there exists an embedding ( ~U;G;') ,!
( ~V ;H; ) whenever '( ~U ) �  ( ~V ) (cf. [16], footnote 2). In particular, our defi-
nition of an orbifold is equivalent to Satake’s, except that (as in [18]) we do not
require that the fixed point sets are of codimension at least two.

(7) If all the actions in the charts of an orbifold atlas on M are free, then M is
a C1-manifold.

Finally, following Satake [15], we define smooth maps between orbifolds. Let
M = (M;U) and N = (N;V) be orbifolds (given by orbifold atlases U and
V). A map f :M ! N is said to be smooth if for any point x 2 M there are
charts ( ~U;G;') around x and ( ~V ;H; ) around f(x), with the property that f
maps U = '( ~U ) into V =  ( ~V ) and can be lifted to a C1-map ~f : ~U ! ~V
with  ~f = f'. Note that smooth maps between orbifolds can be composed. In
particular, two such orbifoldsM andN are said to be diffeomorphic (or equivalent)
if there are such smooth maps f :M ! N and g:N !M with f � g and g � f the
respective identity mappings.

In Section 5, we will consider a stricter notion of map between orbifolds, namely
one which behaves well on sheaves.

2. Sheaves on Orbifolds

LetM = (M;U) be an orbifold (where U is a maximal atlas). A sheaf S onM is
given by:

(i) for each chart ( ~U;G;') forM an (ordinary) sheaf S ~U on the space ~U ;
(ii) for each embedding �: ( ~U;G;') ,! ( ~V ;H; ) an isomorphism S(�):S ~U

�
!

��(S ~V ); these isomorphisms are required to be functorial in �.

A morphism between sheaves �:S ! S 0 is a system of ordinary sheaf maps
� ~U :S ~U ! S

0
~U

(one for each chart), compatible with the embeddings�, in the sense
that each diagram of the form

kthe267.tex; 27/08/1997; 8:22; v.5; p.3



6 I. MOERDIJK AND D. A. PRONK

S ~U

�
~U
- S

0
~U

��(S ~V )

S(�)

?

��(�
~V
)
- ��(S 0~V )

?

S0(�)

commutes. This defines a category ~M of all sheaves (of sets) onM. Sheaves of
Abelian groups, rings, etc., are defined similarly.

EXAMPLES. (1) For each ~U defineO ~U to be the sheaf of germs of C1-functions
on ~U ; each embedding �: ~U ,! ~V induces a map O ~U

�
! ��(O ~V ) by composition

with ��1. This defines a sheafO orOM, called the structure sheaf of the orbifold.
(2) In a similar way, one can construct a sheaf 
q of differential q-forms.

Remarks. (1) To define a sheaf S (up to isomorphism), it is enough to specify
the sheaves S ~U and sheaf maps S(�) for all the charts ~U in some covering atlas for
~M with the property that the imagesU = '( ~U ) �M form a basis for the topology

on M . (This is a consequence of the Comparison Lemma ([4, [Thm III 4.1]), and
analogous to [17], Proposition 4.)

(2) Let S be a sheaf onM, and let ( ~U;G;') be a chart in U . Then each g 2 G
defines an embedding g: ~U ,! ~U , so there is a sheaf map S(g):S ~U ! g�(S ~U ). If
s 2 S ~U;x is a point in the stalk over x 2 ~U , write

g � s = S(g)(s) 2 g�(S ~U )x = S ~U;g�x:

This defines an action byG on the sheafS ~U . Thus we see thatS ~U is aG-equivariant
sheaf on ~U .

(3) (Cf. Remark 7 in Sect. 1). If all actions in the charts are free, then a sheaf on
M is the same thing as a sheaf on the underlying manifold M ;O is then the usual
structure sheaf of germs of C1-functions. (In the general case where the actions
are not necessarily all free, a sheaf on M induces a sheaf onM, but the category
~M is quite different from the category ~M of sheaves on M .)

(4) The category ~M of sheaves onM is a topos. In fact ( ~M;O) is a smooth
étendue in the sense of Grothendieck–Verdier ([4, Exercise IV 9.8.2 j]), as will be
discussed in the next section.

(5) For two orbifolds M and N , any map ( ~M;OM) ! ( ~N ;ON ) of ringed
topoi induces a smooth map between orbifoldsM ! N . This is an easy conse-
quence of the explicit description of such topos maps in terms of groupoids given
in Section 3 below. Also, up to equivalence the orbifoldM can be recovered from
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ORBIFOLDS, SHEAVES AND GROUPOIDS 7

the category of sheaves ~M, as will be shown explicitly in (the proof of) our main
theorem in Section 4.

Contrary to the last remark, a smooth map f :M ! N between orbifolds
(as defined in Section 1) does not in general induce a morphism of ringed topoi
( ~M;OM) ! ( ~N ;ON ). However, diffeomorphic orbifolds do have equivalent
sheaf categories:

PROPOSITION 2.1. Let f :M �
! N be a diffeomorphism between orbifolds. Then

f induces an equivalence of sheaf categories ~M�= ~N . (This equivalence is in fact
one of ringed topoi).

Proof. Let f :M ! N be a diffeomorphism and write e:N ! M for its two-
sided smooth inverse. The main point will be to see that such an f induces a natural
operation f�: ~N ! ~M on sheaves. It will be clear from the construction that e�

and f� are mutually inverse up to natural isomorphism. In the proof we will use
the following lemma.

LEMMA 2.2. Let ( ~U;G;') and ( ~W;K;�) be charts forM over U = '( ~U ) and
W respectively, and assume U �W . Also, suppose there is a point x 2 ~U so that
G = Gx (e.g. this is the case if ~U is a linear chart). Let �: ~U ! ~W be any smooth
map so that  � = '. Then � is an embedding.

Proof of Lemma 2.2 Note first that since ': ~U ! U is a proper map and
�( ~U) � ~W is Hausdorff, �: ~U ! �( ~U ) is a proper map onto its image. Thus if we
can show that � is a local diffeomorphism, it must be a covering projection, and
hence a diffeomorphism since ��1�(x) � '�1'(x) = fxg. Thus it remains to
show that � is a local diffeomorphism. This being a local matter, we may assume
that ~U and ~W are linear charts, and hence that there is an embedding �: ~U ,! ~W
(cf. Remarks 5 and 6 in Sect. 1). For z 2 ~U let kz = (d�)z �(d�

�1)�(z) 2 Gl(n;R).
Let D � ~W be the dense open set on which K acts freely and let E = ��1(D).
Then for z 2 E there is a unique k 2 K for which �(z) = k � �(z), hence
k = kz . This shows that z 7! kz maps the dense setE � ~U into the finite subgroup
K � Gl(n;R). By continuity, we have kz 2 K for all z 2 ~U . Since ~U is connected,
kz is constant, with value k say. Thus � = k � �, and hence an embedding.

To continue the proof of Proposition 2.1, choose x 2 M . Choose linear charts
for which there are smooth liftings ~f and ~e as in the diagram below, where x 2 U
and f(x) 2 V 0; this can be done in such a way that V � V 0 and ~V is simply
connected, so that there is an embedding �: ~V ,! ~V 0 between the charts for N
(cf. Sect. 1, Remark 6), as indicated
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8 I. MOERDIJK AND D. A. PRONK

~U
~f
- ~V �

- ~V 0 ~e
- ~W

U

'

?

f
- V
?

� V 0
?

 

e
- W:

?

�

By the lemma, ~e � � � ~f is a diffeomorphism onto its image. Hence ~e and ~f have
maximal rank, so are C1-embeddings.

This proves thatM has a basis of charts ( ~Ui; Gi; 'i) with the property that for
each i there is a chart ( ~Vi;Hi;  i) forN and a lifting ~fi which is a C1-embedding

~Ui
�

~fi

- ~fi( ~Ui) � ~Vi

Ui
?

�

f
- f(Ui)

?

� Vi
?

 i :

But then ~fi( ~Ui), with the evident action by Gi, is a chart over f(Ui) � N ,
compatible with the orbifold structure for N , and hence belongs to the maximal
atlas for N . Thus if S is any sheaf on N , we can define a sheaf f�(S) onM by
specifying its values on this basis of charts ( ~Ui; Gi; 'i), as

f�(S) ~Ui =
~f�i (S ~f( ~Ui)

) = ~f�i (S ~Vi):

For any embedding �: ~Ui ! ~Uj between charts in this basis, � = ~fj �� � ~f
�1
i is an

embedding ~fi( ~Ui) ,! ~fj( ~Uj) between charts for N , and we can define f�(S)(�)
to be the map

f�(S) ~Ui =
~f�i (S ~fi( ~Ui)

)
~f�
i
S(�)
- ~f�i �

�(S ~fj( ~Uj)
) �= �� ~f�j (S ~fj( ~Uj)

) = f�(S) ~Uj :

This completes the description of the functor f�: ~M! ~N . The rest of the proof is
straightforward.

3. Smooth Groupoids and Étendues

Recall that a (topological) groupoid G is given by a spaceG0 (‘of objects’), another
space G1 (‘of arrows’), and continuous mappings s; t:G1 � G0 for source and
target, u:G0 ! G1 for units, i:G1 ! G1 for inverse and m:G1 �G0 G1 =
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ORBIFOLDS, SHEAVES AND GROUPOIDS 9

f(g; h)jg; h 2 G1; s(g) = t(h)g ! G1 for multiplication (composition). We shall
write g �h = m(g; h) and g�1 = i(g), and g:x! y to denote that s(g) = x while
t(g) = y. These mappings are required to satisfy the familiar identities

s(g � h) = s(h); t(g � h) = t(g); su(x) = x = tu(x);

s(g�1) = t(g); t(g�1) = s(g);

g � u(x) = g = u(y) � g (for g:x! y)

g � g�1 = u(y); g�1 � g = u(x);

(g � h) � k = g � (h � k):

As in [13] and [2], we shall call G a smooth groupoid if G0 and G1 are C1-
manifolds, all structure maps are smooth, and moreover s and t are submersions
(so the domain G1 �G0 G1 of the composition map m is again a manifold). If s
and t are local diffeomorphisms we shall call G an étale groupoid. All groupoids in
this paper will be (assumed) smooth. A homomorphism between smooth groupoids
':G ! H is given by two smooth maps '0:G0 ! H0 and '1:G1 ! H1 which
commute with the structure maps of G andH.

EXAMPLES. (1) For any manifold M , there is an étale groupoid �(M) with
M as space of objects. The space of arrows is the space of all germs of (local)
diffeomorphisms, equipped with the sheaf topology.

(2) Let L be a Lie group acting smoothly on a manifold X . The ‘translation
groupoid’ XL of this action has X as space of objects and L � X as space of
arrows. The source and target maps are defined

s(�; x) = x; t(�; x) = � � x;

while the multiplication m, the unit u and the inverse i of this groupoid XL are
defined from the corresponding structure group L, in the obvious way.

Let G be a (smooth) groupoid. A G-equivariant sheaf (briefly, a G-sheaf) is a
sheaf E on G0 with a right action by the space G1 of arrows. Thus E is given by
an étale space p:E ! G0, together with an action map

�:E �G0 G1 ! E; �(e; g) = e � g;

defined for all pairs e 2 E; g 2 G1 with p(e) = t(g), satisfying the usual identities
for an action (p(e � g) = s(g), e � (g � h) = (e � g) � h and e � u(x) = e, whenever
these make sense). A map of such G-sheaves f :E ! E0 is a map of étale spaces
over G0 which respects the action. In this way we obtain a category

Sh(G)

of all G-sheaves.
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10 I. MOERDIJK AND D. A. PRONK

EXAMPLES. (3) Let L act on X with translation groupoid XL. An XL-sheaf is
exactly the same as an L-equivariant sheaf on X , i.e. an L-space E equipped with
an L-equivariant étale map E ! X . The category of these L-equivariant sheaves
is usually denoted by ShL(X) (rather than Sh(XL)).

(4) Suppose G is an étale groupoid. Let OG be the sheaf of germs of smooth
functions on G0. This sheaf carries a natural G-action, defined as follows. Let
�:Uy ! R represent an element germy(�) of OG at y 2 G0, and let g: x ! y
be an arrow of G. Let Vg � G1 be an open neighbourhood of g, so small that
both s and t restrict to diffeomorphisms on Vg, and so that t(Vg) � Uy. Define
germy(�) � g = germx(� � (sjVg) � (tjVg)

�1). ThenOG is naturally a G-sheaf. It is
in fact a sheaf of rings, called the structure ring of G.

The category Sh(G) of all G-sheaves is a topos (4, [Exercise IV 9.8.2 a]). The
topoi that so arise from étale groupoids form a special class.

DEFINITION 3.1 [4]. A smooth étendue is a ringed topos (T ;OT ) for which there
exists a (smooth) étale groupoid G, and an equivalence of categories T ' Sh(G),
sendingOT to the structure ring OG (up to isomorphism).

(The groupoid G is unique up to weak equivalence; see Remark 4 below.)

Remarks. (1) Any manifold M can be viewed as a smooth groupoid, with
identity arrows only. The equivariant sheaves are exactly the ordinary sheaves on
M . In this way, each manifold can be viewed as a smooth étendue.

(2) A homomorphism ':G ! H between groupoids induces an evident pull-
back functor '�: Sh(H)! Sh(G). This defines a morphism of topoi (again denot-
ed) ': Sh(G)! Sh(H).

(3) Say ':G ! H is a weak equivalence if the following two conditions
hold: first, the map s�2:G0 �H0 H1 ! H0 is a surjective submersion (where
G0 �H0 H1 = f(x; h)jx 2 G0; h 2 H1; '(x) = t(h)g); secondly, the square

G1
'
- H1

G0 �G0

(s;t)

?

'�'
- H0 �H0

?

(s;t)

is a fibered product. Say two groupoidsH andK are weakly (or ‘Morita’) equivalent
if there exist such weak equivalences

H  G ! K;

for some smooth groupoid G. (Note that the notion of weak equivalence between
groupoids is stable under pullback as described in Definition 5.1, so that ‘weakly
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ORBIFOLDS, SHEAVES AND GROUPOIDS 11

equivalent’ defines an equivalence relation on smooth groupoids.) For such a weak
equivalence ':G ! H, the induced morphism Sh(G)! Sh(H) is an equivalence
of (ringed) topoi. Thus weakly equivalent groupoids define essentially the same
equivariant sheaves.

(4) [10], [14] For a large class of groupoids, including those weakly equivalent
to an étale groupoid, the morphisms of topoi of equivariant sheaves can be described
in terms of the groupoids. Indeed, any map of ringed topoi f : Sh(G) ! Sh(H) is
induced by a diagram of smooth groupoids

G �
�

'
K

 
- H;

where ' is a weak equivalence (in the sense that '� � f� �=  �). In other words,
up to weak equivalence of groupoids, every topos map comes from a groupoid
homomorphism. The intermediate groupoid K is unique up to weak equivalence,
as in the formalism for categories of fractions ([6]). In particular, if two ringed
topoi Sh(G) and Sh(H) are equivalent, the groupoids G and H must be weakly
equivalent.

We shall need one more definition: let G be an étale groupoid, and let �(G0) be
the étale groupoid of germs as described in Example 1 above. Each arrow g:x! y
in G defines a germ 
(g) = germx((tjVg) � (sjVg)

�1), as in the description of OG
in Example 4 above. This defines a homomorphism


:G ! �(G0)

of groupoids (which is the identity on objects). We say that G is effective if 
 is
faithful, i.e. if 
(g) = 
(h) implies g = h. (Such effective étale groupoids are
essentially the same as S-atlases [3], and correspond closely to pseudogroups of
diffeomorphisms [18, Def. 3.1.1].) For a weak equivalence G ! H between étale
groupoids, G is effective if and only ifH is. In particular, it makes sense to define a
smooth étendue T to be effective if T = Sh(G) for some effective G, because this
G is unique up to weak equivalence.

4. Characterization of Orbifolds

We are now ready to state our main theorem.

THEOREM 4.1. For any ringed topos T = (T ;OT ) the following properties are
equivalent:

(1) T �= ~M for some orbifoldM (unique up to equivalence of orbifolds).
(2) T �= ShL(X) (the topos of equivariant sheaves), for some manifold X and

a compact Lie group L acting smoothly on X , so that the action has finite
isotropy groups and faithful slice representations.
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12 I. MOERDIJK AND D. A. PRONK

(3) T is an effective smooth étendue such that the diagonal T ! T � T is a
proper map (between topoi).

(4) T �= Sh(G), for some effective étale groupoid G such that (s; t) : G1 !

G0 �G0 is a proper map (between manifolds).

Remarks. (1) The symbols �= in the statement of the theorem are equivalences
of ringed topoi. T has a structure ring OT by assumption. ~M in Part 1 and Sh(G)
in Part 4 have canonical structure rings OM and OG , as described in Section 2,
Example 1 and Section 3, Example 4 above. The structure ring of the topos ShL(X)
of equivariant sheaves, which makes the equivalence in Part 2 of the theorem one
of ringed topoi, is not the obvious one, but the sheaf S of germs of functions on
slices. For a point x 2 X , the stalk Sx consists of germs ofC1-functions Vx ! R,
where Vx is a slice at x, given by a ‘slice representation’ L�Lx Vx �= Ux for some
L-invariant neighborhood Ux of x, see [9] or [1]. We will denote the equivalence
class of a pair (�; v) 2 L � Vx by � 
 v 2 L �Lx Vx; thus �� 
 v = � 
 �v
whenever � 2 Lx. There is a natural action of L on this sheaf S: for � 2 L, a slice
representation at x gives a similar one at � � x by conjugation,

� :L�L��x V
�
x
�= L�Lx Vx:

Here V �
x is the same vector space Vx, with action of L��x induced by that of Lx

via the conjugation homomorphism L��x ! Lx, � 7! ��1��; the map � sends an
equivalence class � 
 v 2 L �L��x V

�
x to �� 
 v 2 L �Lx Vx. Thus � acts on a

germ fx:Vx ! R of Sx by sending it to the germ of the same function on the slice
V �
x at � � x.

(2) It is known that every orbifoldM arises as the space of leaves of a foliation
with compact leaves and finite holonomy groups. The étale groupoid G for which
~M �= Sh(G) (as in Part 4 of the statement) is then the holonomy groupoid (or

‘graph’, [7], [19]) of that foliation, constructed from a suitable complete transversal
section.

(3) For a (smooth) groupoid G, the property that the map (s; t):G1 ! G0�G0

is proper (as in Part 4 of the theorem) is easily seen to be invariant under weak
equivalence (Section 3, Remark 3) of groupoids.

(4) From Section 3, Remark 4 it follows that two étale groupoids G and G0 as
in Part 4 of the theorem represent the same orbifold if and only if they are weakly
equivalent. Similarly, two Lie group actions L on X and L0 on X 0 as in Part 2
represent the same orbifold if and only if their translation groupoids XL and X 0

L0

are weakly equivalent.

Proof of Theorem 4.1. 1) 2. Since the underlying space M of the orbifoldM
is assumed to be paracompact and Hausdorff, there exists an invariant Riemannian
metric onM, and one can construct the bundleX = OFr(M)!M of orthogonal
frames. As pointed out in [16, Section 1.5],X is an orbifold for which all the local
group actions are free, hence is an ordinary manifold (cf. Section 1, Remark 7).
Thus its topos of sheaves ~X is the topos of ordinary sheaves on the manifold (as
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noted in Section 2, Remark 3). On the other hand, X is a principal O(n)-bundle
overM, so by descent theory, the category ~M of sheaves onM is equivalent to
that of O(n)-equivariant sheaves on X

~M�= Sh(X;O(n)):

To complete the proof of the implication 1) 2 of the theorem, it thus suffices to
show that the action of O(n) on X has finite isotropy and faithful slice representa-
tions. This being a local matter, it suffices to consider the case where the orbifold
M is given by just one chart Rn acted upon by a finite group G of orthogonal
transformations. In this case it is elementary to verify that for the induced action
of O(n) on X = OFr(Rn)=G, the isotropy groups are conjugates (in O(n)) of
the isotropy groups of the action G on R

n , while the slices are representations
conjugate to the given representation of G in Rn .

2 ) 4: Let L act on X as stated in Part 2 of the theorem. As in Example 3 of
Section 1, the topos ShL(X) of equivariant sheaves is the topos Sh(XL) of sheaves
for the translation groupoid XL. For this groupoid, the map (s; t):X � L !
X � X is evidently proper. Since this propriety property is invariant under weak
equivalence (Remark 3 above), it suffices to show that XL is weakly equivalent to
an effective étale groupoid. To this end, coverX by a collection fUig ofL-invariant
open sets, for which there exist slice representations

�i:L�Li Vi ! Ui:

(Thus Li is a finite subgroup of L, Vi is a linear Li-representation, L �Li Vi is
obtained fromL�Vi by identifying (�; �v) and (��; v) for � 2 Li (as in Remark 1
above), and �i is anL-equivariant diffeomorphism. Below, we will identify Vi with
the subspace �i(1�Vi) � Ui, and 1
 0 with the point x.) Write G0 = �Vi for the
disjoint sum of all the Vi, and

p:G0 ! X

for the evident map p(i; v) = �i(1 
 v). The translation groupoid XL induces a
groupoid G with G0 as space of objects and a homomorphism p:G ! XL, if we
define the space of arrows G1 by pullback

G1 - L�X

G0 �G0

(s;t)

?

(p;p)
- X �X:

?

(s;t)

Note that this fibered product is transversal (precisely because the slices Vi are
transversal to the L-orbits), so that G1 is a smooth manifold. We claim that the
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14 I. MOERDIJK AND D. A. PRONK

homomorphism p:G ! XL is a weak equivalence. For this, it suffices to observe
that the map

L�G0 ! X; (�; (i; v)) 7! � � p(i; v) = �i(�
 v)

is a surjective submersion. Indeed, its restriction toL�Vi is the covering projection
L� Vi ! L�Li Vi

�= Ui � X . Next, we claim that the source and target maps of
this groupoid G are étale, i.e. local diffeomorphisms. By symmetry (via the inverse
i:G1 ! G1), one of them is étale if and only if the other is. Let us show that
t:G1 ! G0 is étale. Consider the pullback

Hom(Vi; Vj) - G1

Vi � Vj
?

� - G0 �G0:
?

(s;t)

Thus Hom(Vi; Vj) = f(�; x)jx 2 Vi; � 2 L; � � x 2 Ui \ Vjg is the set of arrows
in G from points in Vi to points in Vj . SinceG0�G0 is the disjoint sum of all these
products Vi � Vj , it is enough to show that

t: Hom(Vi; Vj)! Vj ; t(�; x) = � � x

is étale. But note that Hom(Vi; Vj) can also be constructed as the pullback

Hom(Vi; Vj) - L� (Vi \ Uj) � - L� Vi

L�Li (Vi \ Uj)
?

� - L�Li Vi:
?

Vj \ Ui

?

- L�Lj (Vj \ Ui)

o�ji

Vj

?

\
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Here �ji = �j � �
�1
i :L�Li (Vi \Uj)

�
! Ui \Uj ! L�Lj (Vj \Ui): This shows

that t: Hom(Vi; Vj)! Vj is the composition of a covering projection and an open
inclusion, hence étale. Note that the restriction of this groupoid G to a summand Vi
is exactly the translation groupoid (Vi)Li of the slice representationL�Li Vi �= Ui.
Thus G is an effective groupoid, precisely because the slice representations of the
action by L on X are assumed to be faithful. This completes the proof of the
implication 2) 4.

4) 1: Let G be an effective étale groupoid with the map (s; t):G1 ! G0�G0

proper. Let M be the orbit space of G (i.e., the quotient space of G0 obtained by
identifying two points x; y 2 G0 if and only if there exists an arrow g:x ! y in
G1). Write �:G0 ! M for the quotient map; this is an open map because s and t
are open. Note that M is Hausdorff because (s; t) is proper, and paracompact (in
fact M is a metric space as an open quotient of the manifold G0).

We will describe an orbifold atlas for M , explicitly constructed from the
groupoid G. The local group actions and embeddings between charts for this
atlas will correspond exactly to the arrows in G, and it will be evident from the
construction that sheaves on this orbifoldM correspond to G-sheaves.

Fix a point x 2 G0. Since (s; t):G1 ! G0 � G0 is proper and s; t:G1 � G0

are both étale, (s; t)�1(x) = Gx is a finite group. For each g 2 Gx choose
an open neighborhood Wg of g in G1, so small that both sjWg and tjWg are
diffeomorphisms into G0, and so that these Wg are pairwise disjoint. We will now
shrink these open sets Wg in a suitable way. First, let Ux =

T
g2Gx

s(Wg); this
is an open neighborhood of x in G0. Since (s; t) is proper, there exists an open
neighborhood Vx � Ux so that

(Vx � Vx) \ (s; t)

 
G1 �

[
g

Wg

!
= ;:

Thus for any h 2 G1

s(h); t(h) 2 Vx ) h 2Wg for some g 2 Gx: (1)

Next, write

~g: s(Wg)
�
! t(Wg)

for the diffeomorphism t � (sjWg)
�1. Note that Vx � s(Wg) for each g 2 Gx, so

each ~g is defined on the open set Vx. Define a smaller neighborhoodNx � Vx by

Nx = fy 2 Vxj~g(y) 2 Vx for all g 2 Gxg:

Note that if y 2 Nx then for any h 2 Gx, also ~h(y) 2 Nx. (Indeed, pick any
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16 I. MOERDIJK AND D. A. PRONK

g 2 Gx. Then since ~h(y) 2 V and y 2 V , both ~g(~h(y)) and (gh)�(y) are defined,
and equal. Hence ~g(~h(y)) 2 Vx.) Thus the group Gx acts on Nx, by

g � x = ~g(x): (2)

Now define, for each g 2 Gx,

Og = Wg \ s
�1(Nx)

= Wg \ (s; t)
�1(Nx �Nx)

(the last identity because y 2 Nx ) ~g(y) 2 Nx as just shown). Then by (1), for
any k 2 G1,

s(k); t(k) 2 Nx ) k 2 Og for some g 2 Gx: (3)

It follows that G1 \ (s; t)
�1(Nx � Nx) is the disjoint union of the open sets Og .

Thus the restriction of the groupoid G to Nx is exactly the translation groupoid
of the action (2) of Gx on Nx. Furthermore, by (3), Nx=Gx ,! M is an open
embedding. (Note that the neighborhoodsNx may be chosen arbitrary small.) This
shows thatG0 has a basis of open setsNx with group actionGx as above. To show
that they form the atlas for an orbifold structure on M , it remains to construct
suitable embeddings. To this end let (Nx; Gx) and (Ny; Gy) be two such charts,
and suppose z 2 G0 is such that �(z) 2 �(Nx) \ �(Ny). Let g: z ! x0 2 Nx and
h: z ! y0 2 Ny be any arrows inG1. LetWg andWh be neighborhoods for which s
and t restrict to homeomorphisms, and let (Nz; Gz) be a chart as constructed above
at z. We can chooseWg andWh, and thenNz , so small that s(Wg) = Nz = s(Wh),
while t(Wg) � Nx and t(Wh) � Ny . Then ~g = t � (sjWg)

�1:Nz ,! Nx, and
similarly ~h:Nz ,! Ny are the required embeddings. This proves that these charts
(Nx; Gx; �:Nx ! Nx=Gx � M) form a well-defined orbifold structure M on
M .

Finally, observe that for two small enough charts (Nx; Gx) and (Ny; Gy), any
embedding �:Nx ! Ny must (locally) be of the form ~g for an arrow g:x! y in
G1. Indeed, since � � � = � there is at least one arrow h:x ! y in G; and if Nx,
Ny are chosen small enough then h defines an embedding ~h:Nx ! Ny . As in the
proof of Lemma 2.2, it follows that �(z) = k � ~h(z) (for all z 2 Nx), for a unique
k 2 Gy. thus � = ~k � ~h = ~kh. It is now easy to see that the étale groupoid G and
the constructed orbifoldM have the same category of sheaves.

3 , 4: This equivalence is a formal property of proper maps between topoi
(cf. [12] or Def. 5.3 below). Indeed, for any spaceS write ~S for the associated topos
of sheaves on S. Then S ! S0 is a proper map of spaces if and only if ~S ! ~S0 is a
proper map of topoi. Moreover, for any smooth étendue T and any étale groupoid
G representing T (as in 3.1 above), the square
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~G1 - Sh(G) ========== T

~G0 � ~G0

(s;t)

?

p
- Sh(G)� Sh(G)

?

�

==== T � T
?

�

is a pullback of topoi, where p� is the functor which forgets the action by G on the
sheaves in Sh(G). Since p is an open surjection, (s; t) is proper iff � is.

This, finally, completes the proof of the theorem.

5. Fibered Products of Orbifolds

By way of example, we shall outline in this section a construction of fibered
products of orbifolds, and state a change-of-base formula for sheaf cohomology.

Starting from the equivalent characterizations of an orbifold in terms of its
sheaves (Thm 4.1), it is natural to consider the category of orbifolds and (isomor-
phism classes of) smooth mappings between the associated smooth étendues of
sheaves (here we call a map of smooth étendues smooth if it is a map of ringed
topoi). We call such maps strong maps, in contrast to the weaker notion of smooth
map described in Section 1. (Remark that by Proposition 2.1 a diffeomorphism
as in Section 1 is a strong map.) By Remark 2 in Section 3, such strong maps
correspond to smooth homomorphisms between groupoids. Explicitly, letM and
N be orbifolds, and let G andH be smooth groupoids representingM andN as in
Theorem 4.1; thus ~M�= Sh(G) and ~N �= Sh(H). ForM, one can take for G either
an étale groupoid with proper map G1 ! G0 � G0 as in Part 4 of the Theorem,
or the translation groupoid XL of a group action as in Part 2; similarly for N
and H. A strong map f :M ! N is represented by a diagram G �

 K ! H of
homomorphisms between smooth groupoids, whereK ! G is a weak equivalence.
Thus, Sh(K) �= Sh(G), andK still representsM. This shows that, given a groupoid
H representingN , strong maps f :M!N are represented by smooth homomor-
phisms ':K ! H, where K is a groupoid (depending on f ) which represents
M.

For two (strong) maps f :M ! N and f 0:M0 ! N , represented by homo-
morphisms between étale groupoids ':K ! H and '0:K0 ! H, it is a folklore
fact (and an immediate consequence of the description of strong maps in terms of
groupoids) that the pullback of topoi ~M� ~N

~M0 is represented by the groupoid P ,
defined as follows.

DEFINITION 5.1. For homomorphisms ':K ! H and '0:K0 ! H the (pseudo)
pullback of groupoidsP = K�HK

0, is described as follows. The space of objects
P0 of P is the fibered product K0 �H0 H1 �H0 K

0
0, consisting of triples (x; g; x0)

with x 2 K0, x0 2 K 0
0 and g:'(x)! '0(x0) an arrow inH. An arrow (x; g; x0)!
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18 I. MOERDIJK AND D. A. PRONK

(y; h; y0) between such triples inP is a pair of arrows,k:x! y inK andk0:x0 ! y0

in K0, so that '0(k0) � g = h � '(k). Using this notation the space P1 of arrows of
P can be constructed as the fibered product P1 = K1 �H0 H1 �H0 K

0
1 of triples

(k; g; k0), with source and target given by s(k; g; k0) = (s(k); g; s(k0)) = (x; g; x0),
and t(k; g; k0) = (t(k); '0(k0) � g � '(k)�1; t(k0)) = (y; h; y0).

Say f :M ! N and f 0:M0 ! N are transversal if there are such represen-
tations ':K ! H and '0:K0 ! H by étale groupoids, so that '0:K0 ! H0 and
'00:K 0

0 ! H0 are transversal maps between manifolds in the usual sense. This def-
inition does not depend on the choice of representing groupoids, and is equivalent
to the obvious condition expressed in terms of the maps between tangent bundles
T (M)! T (N ) T (M0).

In the case that f and f 0 are transversal, the groupoid P just defined is again
a smooth groupoid, and it is elementary to verify that P is an effective étale
groupoid with (s; t):P1 ! P0 � P0 proper. Thus, by Theorem 4.1 P represents
a unique (up to diffeomorphism) orbifold, which we denote by M�N M0; so,
by definition, (M�N M0)� �= Sh(P). This construction does not depend on the
chosen representations ':K ! H and '0:K0 ! H: another choice, using weakly
equivalent groupoids, results in a ‘pullback’ groupoid which is weakly equivalent
to P and hence determines the same orbifold.

The construction of M�N M0 can be summarized in the following propo-
sition.

PROPOSITION 5.2. Let f :M ! N and f 0:M0 ! N be strong maps between
orbifolds, and assume that f is transversal to f 0. Then there exists an orbifold
M�N M

0, unique up to diffeomorphism, for which there is a pullback square of
topoi (of smooth étendues)

(M�N M
0)� - ~M 0

~M

?

f
- ~N

?

f 0 :

Moreover,M�N M0 can be explicitly constructed from a groupoid P , obtained
from groupoid representations of f and f 0, as described above.

Remarks. (1) The underlying space ofM�N M0 is not in general the fibered
product M �N M 0 of the underlying spaces ofM,N andM0. (It is, of course, in
caseM, N andM0 are manifolds.)

(2) The fibered product of covering spaces as described by Thurston in the proof
of Proposition 5.3.3 of [18], forms a special case of the construction above.
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We shall now define when a strong map f :M ! N between orbifolds, i.e. a
map f : ~M ! ~N of smooth étendues, is proper. Let H be an étale groupoid so
that Sh(H) = ~N , as in Part 4 of Theorem 4.1. The manifold H0 of objects can be
viewed as an orbifold, and there is an evident groupoid homomorphism H0 ! H,
giving a strong map of orbifolds H0 ! N . (Here H0 also denotes the groupoid
with identity arrows only, as in Remark 1 of Section 3.) Form the pullback orbifold
H0�NM, and write Y for its underlying space. The projection H0�NM! H0

of orbifolds induces a map of underlying spaces Y ! H0.

DEFINITION 5.3. A strong map M ! N as above is called proper iff the map
Y ! H0, just described, is a proper map of topological spaces in the usual
(Bourbaki) sense.

This condition does not depend on the choice of H. Observe that by Part 2
of Theorem 4.1, there is a manifold X with an action by a compact Lie group
L so that (H0 �N M)� �= ShL(X). Thus Y is the orbit space X=L. The map
H0�NM! H0 is given by a smooth map X ! H0 which is invariant under the
action by L. Thus X=L = Y ! H0 is proper iff X ! H0 is. This definition is a
special case of the more general notion of proper maps between topoi, defined in
[8] and [12].

Write Ab( ~M) for the Abelian sheaves onM. A strong map f :M!N induces
functors on Abelian sheaves

f�: Ab( ~M) � Ab( ~N ) : f�

in the usual way, where f� is left adjoint to f� and f� is exact. Writing Rnf� for
the right derived functor, we can state the change-of-base formula, analogous to
the one for proper maps between schemes (Artin, [5]).

THEOREM 5.4. For any fibered product square of orbifolds (and strong maps)

M�N M
0 p0

- M
0

M

p

?

f
- N

?

f 0 ;

if f 0 is proper then for any Abelian sheaf A onM0, the canonical map

f�Rnf 0�(A)
�
! Rnp�(p

0�A)

is an isomorphism.
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Using the various equivalent definitions of proper maps described above the
proof is fairly straightforward, and uses étale descent and an equivariant version of
ordinary proper base change for manifolds. Details are given in Pronk’s PhD-thesis
(unpublished).

Appendix

In [16], certain properties of embeddings of charts in an orbifold atlas were proved
using that the fixed point set of the action of a group element had codimension at
least two. In this Appendix we give a different proof of these statements, which
works without this codimension requirement.

PROPOSITION A.1. Let �, � be two embeddings ( ~U;G;') ,! ( ~V ;H; ). Then
there exists a unique h 2 H such that � = h � �.

Proof. Choose �x 2 �( ~U) � ~V to be a nonfixed point. Since  (�x) =  (�x)
and �x is a nonfixed point, there is a unique h 2 H sending �x to �x. By
continuity this element h is the same for all points �x in the same connected
component of the set of non-fixed points in � ~U � ~V . We have to show that this
also holds for �x and �x0 in different connected components of the nonfixed
point set of ~V . Different connected components of the nonfixed-point set are being
separated by one or more fixed point sets of codimension 1. However for �x and
�x0 in different connected components there is always a path connecting �x and
�x0 that crosses only one fixed point set of codimension 1 at a time. So in order
to prove that the same element h 2 H also sends �x0 to �x0 for x0 in a different
connected component of the nonfixed point set, it is sufficient to prove this for �x
and �x0 in a connected open neighborhood W � � ~U � ~V such that W\ fixed
point set � L, and W \ L has codimension 1.

Denote the connected component of (W\ nonfixed-point set) containing �x
(resp. �x0), by Wx (resp. Wx0). So assume h � �(x) = �(x) and let hx0 be the
(unique) element of H such that hx0 � �(x0) = �(x0). Suppose that hx0 6= h. By
continuity we have that h � z = �(z) = hx0 � z for all z 2 L \Wx \Wx0 . So h
and hx0 agree on (L \W x \Wx0) � ~V , which has a nonempty interior in L. Pick
z0 2 L \Wx \W x0 and let ( ~V 0;H 0;  0) be a small linear chart around z0 with
an embedding �: ~V 0 ,! ~V , such that z0 2 �( ~V

0) � W . Note that h�1 � hx0 2 H
0,

since it keeps z0 fixed, and we can consider it as an element of O(n;R). Since
h�1 � hx0 6= id and it keeps the hyperplane L fixed, it has to be the reflection in
this plane. So h�1 � hx0(Wx0) \Wx 6= ;. Pick x0 in this intersection and write
W �
x = ��1(Wx) andW �

x0 = ��1(Wx0). Then x0 2 �W
�
x and h�1

x0 �h(x0) 2 �W
�
x0 .

It follows that h(x0) 2 �(W �
x ) and h(x0) = hx0 � h

�1
x0 � h(x0) 2 �(W �

x0). So
�(W �

x ) \ �(W
�
x0) 6= ;, whereas W �

x \W
�
x0 = ;. This contradicts the fact that � is

an embedding. So hx = hx0 and this finishes the proof of the proposition.

LEMMA A.2. Let � be an embedding ( ~U;G;') ,! ( ~V ;H; ) of the atlas U . If
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h (� ( ~U )) \ � ( ~U) 6= ; for some h 2 H , then h (� ( ~U )) = � ( ~U ) and h belongs
to the image of the isomorphism ofG onto a subgroup ofH as defined in the remark
above.

Proof. Choose a nonfixed point �x 2 h (� ( ~U )) \ � ( ~U ). Suppose �x = h� y.
Then 'x = 'y, so there exists a unique g 2 G with gy = x. Consider �(g) 2 H ,
this diffeomorphism is equal to h on an open neighborhood of � y, so they are
equal everywhere (cf. Sect. 1, Remark 2).
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