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Abstract. We characterize orbifolds in terms of their sheaves, and show that orhifolds correspond
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The purpose of this paper isto give acharacterization of orbifolds, or V-manifolds
(Satake[15] and [16], Thurston[18]) in terms of their sheaves. A smooth manifold
is completely determined by all its sheaves, with the smooth structure given by
the particular sheaf of germs of smooth functions. We will show that an analogous
result is true for orbifolds, and we characterize in various ways the categories of
sheaves that so arise (Theorem 4.1 below). One such characterization is in terms
of smooth groupoids (Connes [2, Def. 11.5.2]). Each such groupoid G determines
a category of G-equivariant sheaves. We prove that this is the category of sheaves
on some (uniquely determined) orbifold iff G is a groupoid of germs of diffeo-
morphisms with the property that the source and target maps of G jointly define
a proper map (s,t):G1 — Go x Gp. (Here Gp and G1 denote the spaces of
objects and arrows of the groupoid.) Conversely, we construct for any orbifold
such a groupoid G determining the same category of sheaves. This result shows
that orbifolds are essentially the same as such ‘proper’ groupoids. (One can also
easily reformulate this condition in terms of structures close to groupoids, such as
pseudogroups[18, Def. 3.1.1] or S-atlases[3].) For apreciseformulation and other
such characterizations, we refer to Theorem 4.1 below.

These characterizations naturally lead to various applications. For example,
using mappingsbetween groupoids, wewill show in Section 5 that one can construct
fibered productsof orbifoldsintermsof ‘ proper’ groupoids, and we prove achange-
of-base formulafor the sheaf cohomology of orbifolds, for fibered products along
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proper maps between orbifolds. Further applications will be described in a sequel
[11] to this paper. Among other things, we will show that for an orbifold M and
corresponding (i.e., having the same sheaves) groupoid G, the sheaf cohomol ogy of
M withlocally constant coefficientsagreeswith the ordinary (twisted) cohomol ogy
of the classifying space BG. It will aso be shown that the fundamental group of
an orbifold M (as defined in [18, Def. 5.3.5]) is isomorphic to the Grothendieck
fundamental group of locally constant sheaveson M, and to the fundamental group
of G as an S-atlas [3], and to the ordinary fundamental group of the classifying
space BG.

1. Orbifolds

In this section we briefly review the basic definitions concerning orbifolds, also
called V-manifolds or Satake manifolds (Satake [15], [16], or Thurston [18]).

Let M beaspace. Fix n > 0. An orbifold chart on M is given by a connected
open subset U C R, afinite group G of C'>-automorphisms of U, and a map
o:U — M, so that ¢ is G-invariant (¢ o g = ¢ for dl g € G) and induces a
homeomorphism of U/G onto an open subset U = o(U) of M. An embedding
Al (U,G, ) — (V,H, 1) between two such chartsisasmoothembedding \: U —
V with i) o A = ¢. An orbifold atlas on M isafamily 4 = {(U, G, )} of such
charts, which cover M and are locally compatible in the following sense: given
any two charts (U, G, ¢) for U = o(U) C M and (V, H,4) for V. C M, and a
point x € U NV, there exists an open neighbourhood W C U NV of x and a
chart (W, K, x) for W such that there are embeddings (W, K, x) — (U, G, )
and (W, K,x) — (V, H,1). Two such atlases are said to be equivalent if they
have acommon refinement (where an atlasi/ issaid torefine V if for every chart in
U there exists an embedding into some chart of V). An orbifold (of dimensionn) is
a paracompact Hausdorff space M equipped with an equivalence class of orbifold
atlases.

Remarks. (1) Every orbifold atlasfor M is contained in a unigque maximal one,
and two orbifold atlases are equivalent if and only if they are contained in the same
maximal one. Therefore we shall often tacitly work with a maximal atlas.

(2) Note that for a chart (U, G, ¢), the set of non-fixed points of g:U — U,
1+# g e G,isdensein U. (Indeed, anontrivial automorphism of the connected set
U of finite order cannot fix a nonempty open set.)

(3) For two embeddings X and p.: (U, G, o) = (V, H, 1) there exists a unique
h € H sothat n = h o A. In particular, since each g € G can be viewed as an
embedding of (U, G, ¢) into itself, for the two embeddings A and ) o g there exists
auniqueh € H sothat Ao g = h o A. Thish will be denoted A(g). In this way,
themap A\: U — V induces an injective group homomorphism \: G — H. Thisis
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provedin [16, Lem. 1] when the fixed point set is of codimension at least two. For
the general case, see the Appendix.

(4) Let \: (U G,p) — (V,H,v) be an embedding. If h € H is such that
ANU) N k- MTU) # 0, then h belongs to the image of the group homomorphism
X:G — H just described (and hence A(U) = k- A(U)). Again this is proved in
[16] when the fixed point set is of codimension at |east two. It iseasily seen to hold
without this condition; see the Appendix.

(5) By the differentiable slice theorem for smooth group actions (see [9]), any
orbifold has an atlas consisting of ‘linear charts', i.e. charts of the form (R”, G)
where G is afinite group of linear transformations of R™.

(6) If (U G,¢) and (V, H, ) are two charts for the same orbifold structure
on M, and U is simply connected, then there exists an embedding (U,G, ) —

(V, H,v) whenever o(U) C (V) (cf. [16], footnote 2). In particular, our defi-
nition of an orbifold is equivalent to Satake's, except that (as in [18]) we do not
require that the fixed point sets are of codimension at |east two.

(7) If all the actionsin the charts of an orbifold atlason M are free, then M is
aC*-manifold.

Finally, following Satake [15], we define smooth maps between orbifolds. Let
M = (M,U) and N' = (N, V) be orbifolds (given by orbifold atlases ¢/ and
V). Amap f:M — N is said to be smooth if for any point z € M there are
charts (U, G, ) around z and (V, H, ) around f(z), with the property that f
maps U = ¢(U) into V = (V) and can be lifted to a C®-map f:U — V
with ¢ f = fy. Note that smooth maps between orbifolds can be composed. In
particular, two such orbifolds M and NV are said to be diffeomor phic (or equivalent)
if there are such smoothmaps f: M — N andg: N — M with fogand g o f the
respective identity mappings.

In Section 5, wewill consider astricter notion of map between orbifolds, namely
one which behaves well on sheaves.

2. Sheaveson Orbifolds

Let M = (M,U) bean orbifold (wherel/ isamaximal atlas). A sheaf S on M is
given by:
(i) for each chart (U, G, ¢) for M an (ordinary) sheaf S;; on the space U;
(ii) for each embedding X: (U, G, ¢) — (V, H,1) anisomorphism S(\): S;; =
A*(S;); these isomorphisms are required to be functorial in A.
A morphism between sheaves a: S — S’ is a system of ordinary sheaf maps

oSy — Si (onefor each chart), compatible with the embeddings ), in the sense
that each diagram of the form
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S v 8{7
S(\) S'(N)
(89) 37y A (S)

commutes. This defines a category M of all sheaves (of sets) on M. Sheaves of
Abelian groups, rings, etc., are defined similarly.

EXAMPLES. (1) For each U define O;; to be the sheaf of germs of C>°-functions

on U; each embedding \: U — V inducesamap O = \*(Oy,) by composition

with A\~1. This definesasheaf O or O, called the structure sheaf of the orbifold.
(2) In asimilar way, one can construct a sheaf 2 of differential g-forms.

Remarks. (1) To define a sheaf S (up to isomorphism), it is enough to specify
the sheaves S;; and sheaf maps S(A) for all the charts U in some covering atlas for
M with the property that theimages U = ¢(U) C M form abasisfor the topology
on M. (Thisis aconsequence of the Comparison Lemma ([4, [Thm 1l 4.1]), and
analogousto [17], Proposition 4.)

(2) Let S beasheaf on M, andlet (U, G, ¢) beachartini/. Theneachg € G
defines an embedding g: U — U, so thereis a sheaf map S(g): S — ¢*(Sp)- If
s € 8y, isapointin the stalk over z € U, write

g-s=35(9)(s) €9 (Sp)e = Sp gr-

Thisdefinesanactionby G onthe sheaf S;;. Thuswe seethat Sj; isaG-equivariant
sheafon U.

(3) (Cf. Remark 7 in Sect. 1). If all actionsin the charts are free, then a sheaf on
M isthe same thing as a sheaf on the underlying manifold M; O isthen the usual
structure sheaf of germs of C°°-functions. (In the general case where the actions
are not necessarily all free, a sheaf on M induces a sheaf on M, but the category
M isquite different from the category M of sheaveson M)

(4) The category M of sheaves on M is atopos. In fact (M, ©) is a smooth
étendue in the sense of Grothendieck—\Verdier ([4, Exercise |V 9.8.2]), aswill be
discussed in the next section.

(5) For two orbifolds M and A, any map (M, On) — (N, Op) of ringed
topoi induces a smooth map between orbifolds M — A. Thisis an easy conse-
guence of the explicit description of such topos maps in terms of groupoids given
in Section 3 below. Also, up to equivalence the orbifold M can be recovered from
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the category of sheaves M, as will be shown explicitly in (the proof of) our main
theorem in Section 4.

Contrary to the last remark, a smooth map f: M — A between orbifolds
(as defined in Section 1) does not in general induce a morphism of ringed topoi
(M,0n) — (N, On). However, diffeomorphic orbifolds do have equivalent
sheaf categories:

PROPOSITION 2.1. Let f: M = N bea diffeomor phism between orbifolds. Then
f induces an equivalence of sheaf categories M =~ N. (Thisequivalenceisin fact
one of ringed topoi).

Proof. Let f: M — N be adiffeomorphism and write e: N — M for its two-
sided smooth inverse. The main point will beto seethat suchan f inducesanatural
operation f*: N' — M on sheaves. It will be clear from the construction that e*
and f* are mutually inverse up to natural isomorphism. In the proof we will use
the following lemma.

LEMMA 2.2. Let (U, G, ¢) and (W, K, x) be chartsfor M over U = ¢(U) and
W respectively, and assume U C W. Also, supposethereisa point z € U so that
G = G, (eg.thisisthecaseif U isalinear chart). Let «: U — W be any smooth
map so that ypa = . Then « is an embedding.

Proof of Lemma 2.2 Note first that since o:U — U is a proper map and
a(U) C W isHausdorff, o: U — «(U) isaproper map onto itsimage. Thusif we
can show that « is aloca diffeomorphism, it must be a covering projection, and
hence a diffeomorphism since a1« (z) C ¢ tp(z) = {z}. Thus it remains to
show that « is alocal diffeomorphism. This being alocal matter, we may assume
that U and W are linear charts, and hence that there is an embedding \: U — W
(cf. Remarks5and 6in Sect. 1). For z € U letk, = (da)zo(d)\_l)A(Z) € Gl(n,R).
Let D C W be the dense open set on which K acts freely and let E = A~1(D).
Then for z € E there is aunique k& € K for which a(z) = k- A(z), hence
k = k.. Thisshowsthat z — k, mapsthedenseset E' C U into thefinite subgroup
K C Gl(n, R). By continuity, wehavek, € K foral z € U. SinceU isconnected,
k. is constant, with value k say. Thus o = k o A, and hence an embedding.

To continue the proof of Proposition 2.1, choose z € M. Choose linear charts
for which there are smooth liftings f and ¢ as in the diagram below, where z € U
and f(z) € V'; this can be done in such away that V C V' and V is simply
connected, so that there is an embedding X\: V — V' between the charts for A/
(cf. Sect. 1, Remark 6), asindicated
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)
<
>

U |4 - V!

T

e

f

By the lemma, é o A o f is a diffeomorphism onto itsimage. Hence é and f have
maximal rank, so are C'*°-embeddings.

This provesthat M has abasis of charts (U;, G;, ;) with the property that for
each i thereisachart (V;, H;, ;) for N and alifting f; whichisaC°°-embedding

U; ; fi(0) C Vi
1/’1“
Ui ; fU;) < Vi

But then f;(U;), with the evident action by G, is a chart over f(U;) C N,
compatible with the orbifold structure for A/, and hence belongs to the maximal
atlasfor N. Thusif S is any sheaf on N, we can define a sheaf f*(S) on M by
specifying its values on this basis of charts (U;, Gy, ¢;), as

1), = £ (Sja,y) = F1(Sp).

For any embedding \: U; — U; between chartsin thisbasis, = fj o Ao fi *isan
embedding f;(U;) — f;(U;) between charts for A/, and we can define f*(S)()\)
to be the map

F(8)g, = £ (Sj ) = Fiu" (S5 0,) Z X T (S5 0,) = F(S)g,-

This completes the description of the functor f*: M — N. Therest of the proof is
straightforward.

3. Smooth Groupoidsand Etendues

Recall that a (topological) groupoid G isgiven by aspace G (‘ of objects'), another
space G (‘of arrows’), and continuous mappings s, t: G1 = G¢ for source and
target, u: Go — G1 for units, i:G1 — G for inverse and m:G1 xg, G1 =
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{(g,h)|g,h € G1,s(g) = t(h)} — G1 for multiplication (composition). We shall
writego h = m(g,h) andg—! = i(g), and g: = — y to denotethat s(g) = = while
t(g) = y. These mappings are required to satisfy the familiar identities

s(goh)=s(h), tlgoh)=t(g), sulz)=21z="tu(),
s(gh) =t(g), tlg) =s(g),

gou(z) =g=u(y)og (forg:z — y)

gog t=uly), g tog=u(x),
(goh)ok=go(hok).

Asin [13] and [2], we shall call G a smooth groupoid if Go and G are C*°-
manifolds, all structure maps are smooth, and moreover s and ¢ are submersions
(so the domain G'1 x ¢, G1 of the composition map m is again a manifold). If s
and ¢ arelocal diffeomorphismswe shall call G an étale groupoid. All groupoidsin
this paper will be (assumed) smooth. A homomor phism between smooth groupoids
©:G — H isgiven by two smooth maps ¢o: Go — Hp and ¢1: G1 — Hj which
commute with the structure maps of G and .

EXAMPLES. (1) For any manifold M, there is an étale groupoid I'(M) with
M as space of objects. The space of arrows is the space of al germs of (local)
diffeomorphisms, equipped with the sheaf topology.

(2) Let L be a Lie group acting smoothly on a manifold X. The ‘translation
groupoid’ X; of this action has X as space of objects and L x X as space of
arrows. The source and target maps are defined

s(\,x) =z, t(A\,z) = Az,

while the multiplication m, the unit » and the inverse i of this groupoid X, are
defined from the corresponding structure group L, in the obvious way.

Let G be a (smooth) groupoid. A G-equivariant sheaf (briefly, a G-sheaf) is a
sheaf £ on G with aright action by the space GG of arrows. Thus E is given by
an étale spacep: E — Gy, together with an action map

a.E xg,G1 — E, ale,g) =e-g,

definedfor al pairse € E, g € G1 withp(e) = t(g), satisfying the usual identities
foranaction (p(e-g) = s(g),e-(goh) = (e-g)-hande-u(z) = e, whenever
these make sense). A map of such G-sheaves f: E — E’ isamap of étale spaces
over Go which respects the action. In this way we obtain a category

Sh(g)
of al G-sheaves.
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EXAMPLES. (3) Let L act on X with translation groupoid X;,. An X -shedf is
exactly the same as an L-equivariant sheaf on X, i.e. an L-space E equipped with
an L-equivariant éale map £ — X . The category of these L-equivariant sheaves
isusually denoted by Shy, (X)) (rather than Sh(X)).

(4) Suppose G is an étale groupoid. Let Og be the sheaf of germs of smooth
functions on Go. This sheaf carries a natural G-action, defined as follows. Let
o:U, — R represent an element germ, (o) of Og at y € Go, and let g:z — y
be an arrow of G. Let V;, C G'1 be an open neighbourhood of g, so small that
both s and ¢ restrict to diffeomorphisms on V,, and so that ¢(V;) C U,. Define
germy (o) - g = germ, (o o (s|V) o (¢|V;) ~1). Then Og isnaturally aG-sheaf. Itis
in fact a sheaf of rings, called the structurering of G.

The category Sh(G) of al G-sheavesis atopos (4, [Exercise IV 9.8.2 d). The
topoi that so arise from étale groupoids form a special class.

DEFINITION 3.1[4]. A smooth éendueisaringed topos (7, O7) for which there
exists a (smooth) étale groupoid G, and an equivalence of categories 7 ~ Sh(G),
sending O+ to the structure ring Og (up to isomorphism).

(The groupoid G is unique up to weak equivalence; see Remark 4 below.)

Remarks. (1) Any manifold M can be viewed as a smooth groupoid, with
identity arrows only. The equivariant sheaves are exactly the ordinary sheaves on
M. In this way, each manifold can be viewed as a smooth étendue.

(2) A homomorphism p: G — H between groupoids induces an evident pull-
back functor ¢*: Sh(H) — Sh(G). This defines a morphism of topoi (again denot-
ed) ¢: Sh(G) — Sh(H).

(3) Say v:G — H is a weak equivalence if the following two conditions
hold: first, the map sm2: Go xn, H1 — Hp is a surjective submersion (where
Go Xy, H1 = {(z,h)|z € Go,h € H1,p(x) = t(h)}); secondly, the square

G1

H;

(s:t) (s:t)

GoXGoMHOXHO

isafibered product. Say two groupoids# and K areweakly (or ‘Morita’) equivalent
if there exist such weak equivalences

H+—G—K,

for some smooth groupoid G. (Note that the notion of weak equivalence between
groupoids s stable under pullback as described in Definition 5.1, so that ‘weakly
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equivalent’ defines an equivalence relation on smooth groupoids.) For such aweak
equivalence p: G — H, the induced morphism Sh(G) — Sh(#) is an equivalence
of (ringed) topoi. Thus weakly equivalent groupoids define essentially the same
equivariant sheaves.

(4) [10], [14] For alarge class of groupoids, including those weakly equivalent
to an étalegroupoid, the morphismsof topoi of equivariant sheavescan be described
in terms of the groupoids. Indeed, any map of ringed topoi f:Sh(G) — Sh(#) is
induced by a diagram of smooth groupoids

where ¢ is aweak equivalence (in the sense that p* o f* = *). In other words,
up to weak equivalence of groupoids, every topos map comes from a groupoid
homomorphism. The intermediate groupoid X is unique up to weak equivalence,
as in the formalism for categories of fractions ([6]). In particular, if two ringed
topoi Sh(G) and Sh(H) are equivalent, the groupoids G and ‘H must be weakly
equivalent.

We shall need one more definition: let G be an étale groupoid, and let T'(Gp) be
the étale groupoid of germs as described in Example 1 above. Eacharrow g: x — y
in G definesagermy(g) = germ,((¢|V;) o (s|V,) 1), asin the description of Og
in Example 4 above. This defines a homomorphism

vy g — F(Go)

of groupoids (which is the identity on objects). We say that G is effective if -y is
faithful, i.e. if v(g) = ~(h) implies g = h. (Such effective éale groupoids are
essentially the same as S-atlases [3], and correspond closely to pseudogroups of
diffeomorphisms[18, Def. 3.1.1].) For aweak equivalence G — H between étale
groupoids, G iseffectiveif and only if H is. In particular, it makes senseto definea
smooth étendue 7 to be effectiveif 7 = Sh(G) for some effective G, because this
G is unique up to weak equivalence.

4. Characterization of Orbifolds

We are now ready to state our main theorem.

THEOREM 4.1. For any ringed topos 7 = (7, Or) the following properties are
equivalent:

(1) 7 = M for some orbifold M (unique up to equivalence of orbifolds).

(2) T = Shr(X) (the topos of equivariant sheaves), for some manifold X and
a compact Lie group L acting smoothly on X, so that the action has finite
isotropy groups and faithful slice representations.
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(3) 7 is an effective smooth étendue such that the diagonal 7 — 7 x T isa
proper map (between topoi).

4 T = Sh(g), for some effective étale groupoid G such that (s,t) : G1 —
Go x Gpisa proper map (between manifolds).

Remarks. (1) The symbols = in the statement of the theorem are equivalences
of ringed topoi. 7 has a structure ring O by assumption. M in Part 1 and Sh(G)
in Part 4 have canonical structure rings Oy, and Og, as described in Section 2,
Example 1 and Section 3, Example4 above. Thestructurering of thetopos Shy, (X))
of equivariant sheaves, which makes the equivalence in Part 2 of the theorem one
of ringed topoi, is not the obvious one, but the sheaf S of germs of functions on
dices. For apoint z € X, thestalk S, consistsof germs of C'*°-functionsV,, — R,
whereV, isadliceat x, given by a‘slice representation’ L x,_ V, = U, for some
L-invariant neighborhood U, of xz, see [9] or [1]. We will denote the equivalence
classof apair (o,v) € Lx Vybya®wv € L xp, Vi thusad®@v = a® v
whenever \ € L,.. Thereisanatural action of L onthissheaf S: for A\ € L, adlice
representation at = givesasimilar oneat A - =z by conjugation,

7L xp, V2= Lxp, V.

Here V! is the same vector space V,,, with action of L., induced by that of L,
viathe conjugation homomorphism L., — L, a — A~ ta\; themap 7 sendsan
equivalenceclassa ® v € L x, V)2 toad®v € L x, V,. Thus A actson a
germ f,:V, — R of S, by sending it to the germ of the same function on the slice
VXia - .

(2) Itisknown that every orbifold M arises as the space of leaves of afoliation
with compact leaves and finite holonomy groups. The étale groupoid G for which
M = Sh(G) (asin Part 4 of the statement) is then the holonomy groupoid (or
‘graph’, [7], [19]) of that foliation, constructed from asuitable completetransversal
section.

(3) For a(smooth) groupoid G, the property that themap (s, t): G1 — Go x Go
is proper (as in Part 4 of the theorem) is easily seen to be invariant under weak
equivalence (Section 3, Remark 3) of groupoids.

(4) From Section 3, Remark 4 it follows that two étale groupoids G and G’ as
in Part 4 of the theorem represent the same orbifold if and only if they are weakly
equivalent. Similarly, two Lie group actions L on X and L' on X' asin Part 2
represent the same orbifold if and only if their trandation groupoids X, and X7,
are weakly equivalent.

Proof of Theorem4.1. 1 = 2. Since the underlying space M of the orbifold M
is assumed to be paracompact and Hausdorff, there exists an invariant Riemannian
metric on M, and one can construct thebundle X = OFr(M) — M of orthogonal
frames. Aspointed out in [16, Section 1.5], X isan orbifold for which all the local
group actions are free, hence is an ordinary manifold (cf. Section 1, Remark 7).
Thus its topos of sheaves X is the topos of ordinary sheaves on the manifold (as
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noted in Section 2, Remark 3). On the other hand, X is a principal O(n)-bundie
over M, so by descent theory, the category M of sheaves on M is equivalent to
that of O(n)-equivariant sheaveson X

M = Sh(X,0(n)).

To complete the proof of the implication 1 = 2 of the theorem, it thus suffices to
show that the action of O(n) on X hasfinite isotropy and faithful slice representa-
tions. This being alocal matter, it suffices to consider the case where the orbifold
M is given by just one chart R acted upon by a finite group G of orthogonal
transformations. In this case it is elementary to verify that for the induced action
of O(n) on X = OFr(R")/G, the isotropy groups are conjugates (in O(n)) of
the isotropy groups of the action G' on R, while the slices are representations
conjugate to the given representation of G in R".

2= 4:Let L act on X asstated in Part 2 of the theorem. Asin Example 3 of
Section 1, thetopos Shy,(X) of equivariant sheavesisthetopos Sh(X ) of sheaves
for the translation groupoid Xy,. For this groupoid, the map (s,t): X x L —
X x X isevidently proper. Since this propriety property is invariant under weak
equivalence (Remark 3 above), it sufficesto show that X, isweakly equivalent to
an effective étale groupoid. To thisend, cover X by acollection {U; } of L-invariant
open sets, for which there exist slice representations

0;: L XLiVi—)Ui.

(Thus L; is afinite subgroup of L, V; is alinear L;-representation, L x, V; is
obtained from L x V; by identifying («, Av) and (a\, v) for A € L; (asin Remark 1
above), and 6; isan L-equivariant diffeomorphism. Below, we will identify V; with
the subspace§;(1 x V;) C U;, and 1® O with the point z.) Write Go = XV, for the
disoint sum of al the V;, and

p:Gop— X

for the evident map p(i,v) = 6;(1 ® v). The trandation groupoid X, induces a
groupoid G with G as space of objects and a homomorphism p: G — X, if we
define the space of arrows G'1 by pullback

G1 L xX

(5,t) (s:t)
Gox Gop — X x X.
(p,p)

Note that this fibered product is transversal (precisely because the dlices V; are
transversal to the L-orbits), so that G1 is a smooth manifold. We claim that the
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homomorphism p: G — X, isaweak equivalence. For this, it sufficesto observe
that the map

L x Go— X, (A (4,v)) = X-p(i,v) = 0;(AQv)

isasurjectivesubmersion. Indeed, itsrestriction to L x V; isthe covering projection
L xV;— L xpg, V; =2U; C X.Next, weclaim that the source and target maps of
thisgroupoid G are étale, i.e. local diffeomorphisms. By symmetry (viatheinverse
i:G1 — G1), one of them is étale if and only if the other is. Let us show that
t:G1 — Gy is étale. Consider the pullback

Hom(V;, Vj) G1

(s:t)

Vi xVj —— Go x Go.
ThusHom(V;, V;) = {(\,z)|z € Vj, A € L, X -z € U; NV, } isthe set of arrows
inG from pointsin V; to pointsin V;. Since Gg x Gy isthedigoint sum of all these
products V; x V;, it is enough to show that
t:Hom(V;, V) = Vj, t(\z) =X -z
is étale. But note that Hom(V;, V;) can aso be constructed as the pullback

Hom(V;, V;) — L x (V; NU;) —— L x V;

LXLi (WHUJ)QLX[%‘/Z

wji

VjﬂUi LXLj(VjﬂUi)
n
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Here0;; = 0;00; "L x1, (ViNU;) = U;NU; = L x1, (V; NU;). Thisshows
that ¢: Hom(V;, V;) — V; isthe composition of a covering projection and an open
inclusion, hence étale. Note that the restriction of this groupoid G to asummand V;
isexactly thetrang ation groupoid (V;) 1., of the slicerepresentation L x 1, V; = Us.
Thus G is an effective groupoid, precisely because the dlice representations of the
action by L on X are assumed to be faithful. This completes the proof of the
implication 2 = 4.

4 = 1: Let G be an effective étale groupoid with themap (s, t): G1 — Go x Go
proper. Let M be the orbit space of G (i.e., the quotient space of Gy obtained by
identifying two points z,y € Gg if and only if there exists an arrow g: x — y in
G1). Write m: Go — M for the quotient map; thisis an open map because s and ¢
are open. Note that M is Hausdorff because (s, t) is proper, and paracompact (in
fact M isametric space as an open quotient of the manifold G).

We will describe an orbifold atlas for M, explicitly constructed from the
groupoid G. The local group actions and embeddings between charts for this
atlas will correspond exactly to the arrows in G, and it will be evident from the
construction that sheaves on this orbifold M correspond to G-sheaves.

Fix apoint x € Go. Since (s,t): G1 — Go x Gg isproper and s,t: G1 = G
are both étale, (s,t)"%(z) = G, is a finite group. For each ¢ € G, choose
an open neighborhood W, of g in G, so small that both s|W, and t|W, are
diffeomorphismsinto G, and so that these I, are pairwise digjoint. We will now
shrink these open sets W, in a suitable way. First, let U, = (e, s(Wy); this
is an open neighborhood of z in Go. Since (s, t) is proper, there exists an open
neighborhood V. C U, so that

(Ve X Vi) N (s, 1) (Gl — UWg> = 0.
Y

Thusforany h € G1
s(h),t(h) € Vo = h € W, forsomeg € G,. Q)
Next, write

g:s(Wy) = t(Wy)

for the diffeomorphism ¢ o (s|W,) 1. Notethat V, C s(W,) for each g € G, s0
each g is defined on the open set V.. Define a smaller neighborhood N,, C V. by

N, ={y € Vzlg(y) € Vforal g € G.}.

Note that if y € N, then for any h € G, aso h(y) € N,. (Indeed, pick any
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g € G,. Thensinceh(y) € V andy € V, both §(h(y)) and (gh)™ (y) are defined,

and equal. Hence g(h(y)) € V,.) Thusthe group G, actson N,, by

g-z=g(z). @)
Now define, for each g € G,
0, = W,Nns HN,)
= W, N (s,t) (N, x Ny)

(the last identity becausey € N, = §(y) € N, asjust shown). Then by (1), for
any k € G1,

s(k),t(k) € Ny = k € O, for someg € G,;. (3)

It follows that G1 N (s,t) ~1(NV, x N) is the digioint union of the open sets O, .
Thus the restriction of the groupoid G to NN, is exactly the translation groupoid
of the action (2) of G, on N,. Furthermore, by (3), N,/G, — M is an open
embedding. (Note that the neighborhoods NV, may be chosen arbitrary small.) This
showsthat G hasabasis of open sets NV, with group action GG, as above. To show
that they form the atlas for an orbifold structure on M, it remains to construct
suitable embeddings. To this end let (V,, G ) and (N, G,) be two such charts,
and suppose z € Go issuchthat 7(z) € ©(N,) N 7(N,). Letg:z = 2’ € N, and
h:z —y' € Ny, beanyarrowsinG1. Let W, and W), be neighborhoodsfor which s
and ¢ restrict to homeomorphisms, and let (N, G ,) beachart as constructed above
at z. We can choose W, and W),, andthen N, sosmall that s(W,) = N, = s(W},),
while t(W,) C N, and t(W},,) C N,. Then g = to (s|W,) 11N, — N,, and
similarly h: N, — N, are the required embeddings. This proves that these charts
(Ng, Gy, m: Ny — N /G, C M) form a well-defined orbifold structure M on
M.

Finally, observe that for two small enough charts (N, G) and (N, Gy), any
embedding \: N, — N, must (locally) be of the form g for an arrow g: 2 — y in
G1.Indeed, since m o A = 7 thereis at least onearrow h:z — y in G; and if N,
N, are chosen small enough then / defines an embedding ~: N, — N,. Asin the
proof of Lemma2.2, it followsthat A(z) = k o h(z) (for al z € N,), for aunique
k € Gy.thus X\ = ko h = kh. Itisnow easy to see that the étale groupoid G and
the constructed orbifold M have the same category of sheaves.

3 & 4: This equivalence is a formal property of proper maps between topoi
(cf. [12] or Def. 5.3 below). Indeed, for any space S write S for the associated topos
of sheaveson S. Then S — S’ isaproper map of spacesif andonly if S — S’ isa
proper map of topoi. Moreover, for any smooth étendue 7~ and any étale groupoid
G representing 7 (asin 3.1 above), the square
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G1

Sh(G) =————=T

(s,0) A A

Go x Go —~ Sh(G) x Sh(G) =—=T x T

isapullback of topoi, where p* isthe functor which forgets the action by G on the
sheavesin Sh(G). Since p is an open surjection, (s, t) is proper iff A is.
This, finally, completes the proof of the theorem.

5. Fibered Productsof Orbifolds

By way of example, we shall outline in this section a construction of fibered
products of orbifolds, and state a change-of-base formula for sheaf cohomology.

Starting from the equivalent characterizations of an orbifold in terms of its
sheaves (Thm 4.1), it is natural to consider the category of orbifolds and (isomor-
phism classes of) smooth mappings between the associated smooth étendues of
sheaves (here we call a map of smooth étendues smooth if it is a map of ringed
topoi). We call such maps strong maps, in contrast to the weaker notion of smooth
map described in Section 1. (Remark that by Proposition 2.1 a diffeomorphism
asin Section 1 is a strong map.) By Remark 2 in Section 3, such strong maps
correspond to smooth homomorphisms between groupoids. Explicitly, let M and
N beorbifolds, and let G and H be smooth groupoids representing M and AV asin
Theorem 4.1; thus M = Sh(G) and N = Sh(#). For M, onecan take for G either
an étale groupoid with proper map G1 — Go x G asin Part 4 of the Theorem,
or the trandlation groupoid X; of a group action as in Part 2; similarly for A/
and H. A strong map f: M — N isrepresented by adiagram G < K — H of
homomorphisms between smooth groupoids, where £ — G isaweak equivalence.
Thus, Sh(KC) = Sh(G), and K still represents M. Thisshowsthat, given agroupoid
H representing NV, strong maps f: M — N arerepresented by smooth homomor-
phisms ¢: £ — H, where K is a groupoid (depending on f) which represents
M.

For two (strong) maps f: M — N and f': M' — N, represented by homo-
morphisms between étale groupoids ¢: K — H and ©': K' — H, it isafolklore
fact (and an immediate consequence of the description of strong maps in terms of
groupoids) that the pullback of topoi M x N M’ isrepresented by the groupoid P,
defined as follows.

DEFINITION 5.1. For homomorphisms p: £ — H and ¢': K" — H the (pseudo)
pullback of groupoids P = K x4 K', is described as follows. The space of objects
Py of P isthefibered product Ko x i, H1 x i, K{, consisting of triples (z, g, z')
withz € Ko, 2’ € Kyand g: p(z) — ¢'(2') anarrow in H. Anarrow (z, g, z') —
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(y, h,y'") betweensuchtriplesin P isapair of arrows, k: z — yin K andk': 2’ — o/
in K', sothat ¢’ (k') o g = h o p(k). Using this notation the space P; of arrows of
P can be constructed as the fibered product Py = Ky x g, H1 x u, K} of triples
(k, g, k"), with sourceand target givenby s(k, g, k') = (s(k), g, s(k")) = (z,g,z'),
andt(k, g, k') = (t(k), ' (K') 0 g o p(k) 4, t(K)) = (y, h, /).

Say f: M — N and f': M' — N aretransversal if there are such represen-
tations : K — H and ’: K' — H by étale groupoids, so that po: Ko — Hp and
wp: Ko — Ho aretransversal maps between manifoldsin the usual sense. This def-
inition does not depend on the choice of representing groupoids, and is equivalent
to the obvious condition expressed in terms of the maps between tangent bundles
T(M) = T(N) « T(M).

In the case that f and f’ are transversal, the groupoid P just defined is again
a smooth groupoid, and it is elementary to verify that P is an effective étale
groupoid with (s,t): P — Py x Py proper. Thus, by Theorem 4.1 P represents
a unique (up to diffeomorphism) orbifold, which we denote by M x M'; s0o,
by definition, (M x - M')™ = Sh(P). This construction does not depend on the
chosen representations ¢: K — H and ¢': K’ — H: another choice, using weakly
equivalent groupoids, resultsin a‘pullback’ groupoid which isweakly equivalent
to P and hence determines the same orbifold.

The construction of M x - M’ can be summarized in the following propo-
sition.

PROPOSITION 5.2. Let f: M — N and f": M' — N be strong maps between
orbifolds, and assume that f is transversal to f’. Then there exists an orhifold
M xr M, unique up to diffeomorphism, for which there is a pullback square of
topoi (of smooth étendues)

(M sy M) —— M
I

M

>,

Moreover, M x »r M’ can be explicitly constructed from a groupoid P, obtained
from groupoid representationsof f and f’, as described above.

Remarks. (1) The underlying space of M x - M’ isnot in general the fibered
product M x y M’ of the underlying spaces of M, N and M. (It is, of course, in
case M, N and M' are manifolds.)

(2) Thefibered product of covering spacesas described by Thurstonin the proof
of Proposition 5.3.3 of [18], forms a special case of the construction above.
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We shall now define when a strong map f: M — N between orbifolds, i.e. a
map f: M — N of smooth étendues, is proper. Let H be an étale groupoid so
that Sh(#) = N, asin Part 4 of Theorem 4.1. The manifold Hy of objects can be
viewed as an orbifold, and there is an evident groupoid homomorphism Hy — #H,,
giving a strong map of orbifolds Hy — N. (Here Hp aso denotes the groupoid
with identity arrows only, asin Remark 1 of Section 3.) Form the pullback orbifold
Ho x A M, andwrite Y for its underlying space. The projection Hg x»r M — Hp
of orbifolds induces a map of underlying spacesY — Hp.

DEFINITION 5.3. A strong map M — N as above is called proper iff the map
Y — Hy, just described, is a proper map of topological spaces in the usual
(Bourbaki) sense.

This condition does not depend on the choice of #. Observe that by Part 2
of Theorem 4.1, there is a manifold X with an action by a compact Lie group
L so that (Ho xa M)~ = Shr(X). Thus Y is the orbit space X/L. The map
Ho X M — Hyisgiven by asmooth map X — Hg whichisinvariant under the
actionby L. Thus X/L =Y — Hy is proper iff X — Hp is. This definitionisa
special case of the more general notion of proper maps between topoi, defined in
[8] and [12].

Write Ab(M) for the Abelian sheaveson M. A strong map f: M — N induces
functors on Abelian sheaves

f«:Ab(M) = Ab(N) : f*
in the usual way, where f* isleft adjoint to f, and f* is exact. Writing R" f,. for
the right derived functor, we can state the change-of-base formula, analogous to

the one for proper maps between schemes (Artin, [5]).

THEOREM 5.4. For any fibered product square of orbifolds (and strong maps)

Mxy M —2 o M

P I

)

M N

f
if f is proper then for any Abelian sheaf A on M’, the canonical map
frR"f,(A) = R"p.(p" A)

is an isomor phism.
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Using the various equivalent definitions of proper maps described above the
proof isfairly straightforward, and uses étale descent and an equivariant version of
ordinary proper base changefor manifolds. Detailsare givenin Pronk’s PhD-thesis
(unpublished).

Appendix

In[16], certain properties of embeddings of chartsin an orbifold atlas were proved
using that the fixed point set of the action of a group element had codimension at
least two. In this Appendix we give a different proof of these statements, which
works without this codimension requirement.

PROPOSITION A.1. Let ), 11 be two embeddings (U, G, @) — (V, H,4). Then
thereexistsauniqueh € H suchthat u = h o A.

Proof. Choose Az € A(U) C V to beanonfixed point. Sincet (A z) = ¢ (u z)
and Az is a nonfixed point, there is a unique h € H sending Az to pz. By
continuity this element & is the same for all points Az in the same connected
component of the set of non-fixed pointsin AU C V. We have to show that this
aso holds for Az and Az’ in different connected components of the nonfixed
point set of V. Different connected components of the nonfixed-point set are being
separated by one or more fixed point sets of codimension 1. However for Az and
Az’ in different connected components there is always a path connecting Az and
Az’ that crosses only one fixed point set of codimension 1 at atime. So in order
to prove that the same element 4 € H also sends Az’ to pz’ for 2’ in a different
connected component of the nonfixed point set, it is sufficient to provethis for Az
and Az’ in a connected open neighborhood W C AU C V such that W fixed
point set C L, and W N L has codimension 1.

Denote the connected component of (WnN nonfixed-point set) containing Az
(resp. Az'), by W, (resp. W,/). So assume h - A\(z) = p(z) and let h, be the
(unique) element of H such that h, - A(z') = p(z'). Suppose that h,r # h. By
continuity we havethat h - z = p(z) = hy -z foral z € LONW,NW,.S0h
and h,, agreeon (LNW,NW ) C V, which has anonempty interior in L. Pick
20 € LNW,NW, andlet (V') H',¢') be asmall linear chart around zg with
an embedding v: V' — V, such that zo € (V') C W. Notethat h~2 o hy € H,
since it keeps zo fixed, and we can consider it as an element of O(n,R). Since
h=1o hy # id and it keeps the hyperplane L fixed, it has to be the reflection in
this plane. So h=t o hy (W,r) N W, # (. Pick z in this intersection and write
Wi = A"YW,) and W}, = \"Y(W,). Thenzg € AW} and bt o h(x0) € AW,
It follows that h(zo) € p(Wy) and h(zg) = hy o h;,l o h(xo) € u(Wz). So
p(W) (W) # 0, whereas Wi N W . This contradicts the fact that . is

' T

an embedding. So h,, = h, and this finishes the proof of the proposition.

LEMMA A.2. Let \ be an embedding (U, G,¢) — (V, H, ) of the atlas /. If
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h(A(U)) N A(U) # dforsomeh € H,thenh (XA (U)) = X (U) and h belongs
to theimage of theisomor phismof G onto a subgroup of H asdefined in the remark
above.

Proof. Choose anonfixed point Az € h (A (U)) N A (U). Suppose Az = hAy.
Thenpxz = ¢y, sothereexistsauniqueg € G with gy = z. Consider A\(g) € H,
this diffeomorphism is equal to 4 on an open neighborhood of Ay, so they are
equal everywhere (cf. Sect. 1, Remark 2).
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