1. Using cylindrical coordinates, set up the integral to find the volume of the region enclosed by the vertical cylinder \(x^2 + y^2 = 4 \) and the planes \(z = 0 \) and \(y + z = 4 \). Do NOT evaluate the integral; just set it up.

Solution. To solve this integral, we first find the double integral over the area of the projection to the \(xy \)-plane in terms of polar coordinates. Note that projecting to the \(xy \)-plane gives the area bounded by the circle of radius 2 centered at the origin in \(\mathbb{R}^2 \). We can integrate over this area using the bounds \(0 \leq r \leq 2 \) and \(0 \leq \theta \leq 2\pi \). Hence we just need to put the bounds of \(z \) in terms of \(r \) and \(\theta \). To do this, we substitute in the equation \(y + z = 4 \) with \(y = r \sin \theta \) and have \(0 \leq z \leq 4 - r \sin \theta \). We then have that the volume is

\[
\int \int_R \int_0^{2\pi} \int_0^{2 - r \sin \theta} rdzdrd\theta.
\]

2. Using spherical coordinates, set up the integral to find the volume of the region enclosed by the vertical cylinder \(x^2 + y^2 = 4 \) and the planes \(z = 0 \) and \(z = 2 \). Do NOT evaluate the integral; just set it up.

Solution. Note that we can use the \(\theta \) bounds of \(0 \leq \theta \leq 2\pi \), since we want to go all the way around the cylinder in the clockwise direction in the \(xy \)-plane. We will need to use 2 triple integrals here, since the upper bound of \(\rho \) will change depending on whether we are in the region of the cylinder with \(\phi \leq \pi/4 \) (i.e. the portion of the cylinder above the cone \(\phi = \pi/4 \)) or in the region \(\phi > \pi/4 \). The \(\pi/4 \) is determined by noting that \(\rho = \sqrt{x^2 + y^2} = 2\sqrt{2} \) for any point in the boundary of the top circle of the cylinder. We then have that \(\cos \phi = 2/2\sqrt{2} = \sqrt{2}/2 \), giving \(\phi = \pi/4 \) as the cone we want. For \(\phi \leq \pi/4 \), we are integrating over the volume of the cylinder lying above the cone \(\phi = \pi/4 \). For a given value of \(\phi \) and \(\theta \) in this region, we make a slice which is a right triangle making a right angle with the plane \(z = 2 \), and we have that \(\cos \phi = 2/\rho \), so \(\rho = 2/\cos \phi = 2 \sec \phi \).
Then below the cone $\phi = \pi/4$, we note that a given value of θ and ϕ makes a slice which is a right triangle making a right angle with the plane $z = 0$, which gives $\cos(\pi/2 - \phi) = \sin(\phi) = 2/\rho$ so that $\rho = 2/\sin \phi = 2 \csc \phi$.

Finally we can write our integral as

$$
\int_{}^{\pi/4} \int_{}^{2 \sec \theta} \int_{}^{\rho^2 \sin \phi} d\rho d\phi d\theta + \int_{}^{\pi/2} \int_{}^{2 \csc \theta} \int_{}^{\rho^2 \sin \phi} d\rho d\phi d\theta.
$$

3. Consider using the substitution

$$
\begin{aligned}
x &= u - v, \\
y &= 2u + v
\end{aligned}
$$

for the integral of $x + y^2 - 2$. What is the integrand in terms of u and v?

(Don’t bother with the integral signs, the bounds, or the $dudv$.)

Solution. We immediately have

$$
x + y^2 - 2 = (u - v) + (2u + v)^2 - 2,
$$

which we do not simplify for this problem. Then, to compute the Jacobian, we take partial derivatives

$$
\begin{aligned}
\frac{\partial x}{\partial u} &= 1, & \frac{\partial x}{\partial v} &= -1, \\
\frac{\partial y}{\partial u} &= 2, & \frac{\partial y}{\partial v} &= 1
\end{aligned}
$$

and compute

$$
\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = (1)(1) - (-1)(2) = 1 + 2 = 3,
$$

so our integrand is then

$$
((u - v) + (2u + v)^2 - 2)3
$$

4. Using the same substitution as in the previous problem, suppose the (x, y) region over which we wish to integrate includes the boundary line $2x - y = 3$. Convert this line into a (u, v) boundary line.

Solution. We convert the line given in terms of x and y by substituting for x and y in terms of u and v and have

$$
2(u - v) - (2u + v) = 2u - 2v - 2u - v = -3v = 3,
$$

so $v = -1$ is the bound in (u, v) coordinates.