1. If \(f(x, y, z) = \sqrt{x^3 + \sin(y) - y \ln(z)} \), find \(f(2, \pi/2, 1) \). Perform elementary simplifications.

Solutions. We evaluate by plugging the values for the \(x \), \(y \), and \(z \) coordinates:

\[
f(2, \pi/2, 1) = \sqrt{(2)^3 + \sin(\pi/2) - (\pi/2)\ln(1)} = \sqrt{8 + 1 - 0} = 3.
\]

\[\Box\]

2. Sketch the domain of \(g(x, y) = \ln(1 - 2x - 2y) \).

Solution. The domain of this function is determined by the equation

\[
1 - 2x - 2y > 0
\]

(since we only defined the natural log of positive numbers), and this inequality is the same as writing

\[
2y < 1 - 2x,
\]

\[
y < \frac{1}{2} - x
\]

an equation which describes the region below the line \(y = \frac{1}{2} - x \) in \(\mathbb{R}^2 \).

\[\Box\]

3. Let \(h(x, y, z) = 3x^2z + z \cos(\pi y - \pi x) + 3e^z \). Determine \(\lim_{(x,y,z) \to (1,2,0)} h(x, y, z) \).

Solution. We compute

\[
\lim_{(x,y,z) \to (1,2,0)} h(x, y, z) = h(1, 2, 0) = 3(1)^2(0) + (0)(\cos(\pi(2) - \pi(1))) + 3e^0
\]

\[
= 0 + 0 + 3 = 3,
\]

where the limit is the same as the value of the function since \(h \) is continuous. (That \(h \) is continuous follows from some comments about the continuity of its pieces as functions from \(\mathbb{R} \) to \(\mathbb{R} \). You are **not** required to show that \(h \) is a continuous function.)

\[\Box\]

4. The function \(k(x, y) = \frac{7x^8y}{-2x^9 + 9y^9} \) has no limit as \((x, y) \to (0, 0)\).

Show this by computing the limit of the function along the two following paths:

(a) \(t \mapsto (t, 0) \).
(b) $t \mapsto (t, t)$.

Solution. Consider the first path $t \mapsto (t, 0)$. We must compute the limit as $t \to 0$ of the expression $k(t, 0)$:

$$
\lim_{t \to 0} \frac{7t^8 \cdot 0}{-2t^9 + 9 \cdot 0^9} = \lim_{t \to 0} \frac{0}{-2t^9} = 0.
$$

For the second path $t \mapsto (t, t)$, we must substitute $x = t, y = t$:

$$
\lim_{t \to 0} \frac{7t^8 \cdot t}{-2t^9 + 9t^9} = \lim_{t \to 0} \frac{7t^9}{7t^9} = 1.
$$

Since $0 \neq 1$, meaning that two different paths toward the limit give different values, we conclude that

$$
\lim_{(x,y) \to (0,0)} \frac{7x^3y^3}{2x^6 + 9y^6}
$$

does not exist.

5. Compute $\frac{\partial h}{\partial x}$ for the function in #3.

Solution. We compute

$$
\frac{\partial}{\partial x} (h(x, y, z)) =
$$

$$
\frac{\partial}{\partial x} (3x^2z + z \cos(\pi y - \pi x) + 3e^z) =
$$

$$
\frac{\partial}{\partial x} (3x^2z) + \frac{\partial}{\partial x} (z \cos(\pi y - \pi x)) + \frac{\partial}{\partial x} (3e^z) =
$$

$$
6xz + (-z \sin(\pi y - \pi x))(-\pi) + 0 =
$$

$$
6xz + \pi z \sin(\pi y - \pi x).
$$

Note that we **must** use the chain rule with $\cos(\pi y - \pi x)$ and that the partial derivative of $3e^z$ with respect to x is equal to 0.