We will not answer questions about this page during the exam.

\(f \) is a real-valued function and \(\textbf{F}(x,y,z) = \langle M, N, P \rangle \) is vector-valued. (If in \(\mathbb{R}^2 \), \(\textbf{F} = \langle M, N \rangle \).) \(\textbf{T} \) is an appropriate unit tangent vector and \(\textbf{n} \) is an appropriate unit normal vector.

\(\textbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) is a parameterization of a curve in \(\mathbb{R}^3 \) (\(\textbf{r}(t) = \langle f(t), g(t) \rangle \) in \(\mathbb{R}^2 \)); \(\textbf{r}(u,v) = \langle f(u,v), g(u,v), h(u,v) \rangle \) is a parameterization of a surface, with \(\textbf{r}_u = \frac{\partial \textbf{r}}{\partial u} \) and \(\textbf{r}_v = \frac{\partial \textbf{r}}{\partial v} \).

\[\int_C f(x,y,z) \, ds = \int_a^b f(\textbf{r}(t))|\textbf{v}(t)| \, dt, \text{ where } \textbf{v}(t) = \textbf{r}'(t). \]

Line Integral along a curve \(C \):

Work/Circ/Flow along a curve \(C \):

- in \(\mathbb{R}^2 \): Work/Circ/Flow = \(\int_C \textbf{F} \cdot d\textbf{r} = \int_C M \, dx + N \, dy \). Also see Green’s Theorem.
- in \(\mathbb{R}^3 \): Work/Circ/Flow = \(\int_C \textbf{F} \cdot d\textbf{r} = \int_C M \, dx + N \, dy + P \, dz \). Also see Stokes’ Theorem.

Flux of vector field \(\textbf{F} \):

- across curve \(C \subset \mathbb{R}^2 \): \(\int_C \textbf{F} \cdot \textbf{n} \, ds = \int_C M \, dy - N \, dx \). Also see Green’s Theorem.
- through surface \(S \subset \mathbb{R}^3 \): \(\int_S \textbf{F} \cdot \textbf{n} \, d\sigma = \int_S \textbf{F} \cdot (\textbf{r}_u \times \textbf{r}_v) \, dudv \). Also see Divergence Theorem.

Component Test: \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{\partial P}{\partial z} = \frac{\partial P}{\partial y} \). Equivalently, \(\text{curl}(\textbf{F}) = \nabla \times \textbf{F} = \textbf{0} \).

Fundamental Theorem for Line Integrals: If \(\textbf{F} = \nabla f \) and curve \(C \) goes from \(A \) to \(B \), then

\[\int_C \textbf{F} \cdot d\textbf{r} = f(B) - f(A). \]

Green’s Theorem: Region \(R \subset \mathbb{R}^2 \) has closed boundary curve \(C \).

Work/Circ/Flow = \(\oint_C \textbf{F} \cdot d\textbf{r} = \int_C M \, dx + N \, dy + \int_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy = \int_R \nabla \times \textbf{F} \cdot \textbf{k} \, dx \, dy \),

Flux = \(\oint_C \textbf{F} \cdot \textbf{n} \, ds = \int_C M \, dy - N \, dx + \int_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) \, dx \, dy = \int_R \nabla \cdot \textbf{F} \, dx \, dy \)

Surface Integral of \(g \) over the surface \(S \) (\(g(x,y,z) = 1 \) for surface area):

\[\int_S g(x,y,z) \, d\sigma = \int_R g(\textbf{r}(u,v))|\textbf{r}_u \times \textbf{r}_v| \, dudv, \text{ with parameters } u,v \text{ in } R. \]

Stokes’ Theorem: Surface \(S \) with closed boundary curve \(C \) (where \(C \) has counterclockwise orientation with respect to the normal direction of \(S \)).

Work/Circ/Flow = \(\iint_S \textbf{F} \cdot d\textbf{r} = \int_C M \, dx + N \, dy + P \, dz + \int_S \nabla \times \textbf{F} \cdot d\sigma = \iint_S \nabla \times \textbf{F}(u,v) \cdot (\textbf{r}_u \times \textbf{r}_v) \, dudv \).

Divergence Theorem: Solid \(D \) with boundary surface \(S \).

Flux = \(\iiint_S \textbf{F} \cdot \textbf{n} \, d\sigma = \int_S \textbf{F}(\textbf{r}(u,v)) \cdot (\textbf{r}_u \times \textbf{r}_v) \, dudv = \iint_D \nabla \cdot \textbf{F} \, dV = \iiint_D \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z} \right) \, dV. \)