A look into the mirror (I)
an overview of Mirror Symmetry

Renzo Cavalieri
University of Michigan

Topics in Algebraic Geometry Seminar
Outline

1. Physics: the big black box

2. Math
 - Calabi-Yau threefolds
 - The A-model
 - The B-model
 - The Mirror Map

3. Mirror conjecture
Mirror Symmetry is a correspondence between pairs of (families of) Calabi-Yau threefolds

\[X \leftrightarrow \check{X} \]

that interchanges complex and symplectic geometry.

Mirror Symmetry is motivated by physics.
A physical theory should satisfy some natural axioms that give it the structure of a SCFT.

SUSY is a required feature of a SCFT. It eliminates in a very natural way a lot of the difficulties arising in constructing a string theory.

A mathematical realization of a SCFT is given by a sigma model, a construction depending upon the choice of:

- a Calabi-Yau threefold X;
- a complexified Kahler class ω.
A physical theory should satisfy some natural axioms that give it the structure of a SCFT.

SUSY is a required feature of a SCFT. It eliminates in a very natural way a lot of the difficulties arising in constructing a string theory.

A mathematical realization of a SCFT is given by a sigma model, a construction depending upon the choice of:

- a Calabi-Yau threefold X;
- a complexified Kahler class ω.

A physical theory should satisfy some natural axioms that give it the structure of a SCFT.

SUSY is a required feature of a SCFT. It eliminates in a very natural way a lot of the difficulties arising in constructing a string theory.

A mathematical realization of a SCFT is given by a *sigma model*, a construction depending upon the choice of:

- a Calabi-Yau threefold X;
- a complexified Kahler class ω.

[Renzo Cavalieri](https://www.math.harvard.edu/~cavalieri/)
Mirror Symmetry
(X, ω)

Moduli space of SCFT

M_{compl}
X varies
ω constant

M_{kah}
X constant
ω varies
SUSY suggests the existence of an involution on the moduli space of SCFT such that:

\[H^q(X, \Lambda^p T_X) \cong H^q(\check{X}, \Lambda^p \Omega_{\check{X}}) \]
\[H^q(X, \Lambda^p \Omega_X) \cong H^q(\check{X}, \Lambda^p T_{\check{X}}) \]
In particular, looking at $p = q = 1$

\[T_{M_{\text{compl}}} = H^1(X, T_X) \cong H^1(\tilde{X}, \Omega_{\tilde{X}}) = T_{M_{\text{kah}}} \]

\[T_{M_{\text{kah}}} = H^1(X, \Omega_X) \cong H^1(\tilde{X}, T_{\tilde{X}}) = T_{M_{\text{compl}}} \]

we obtain an identification of tangent spaces, and hence local isomorphisms between complex and kahler moduli spaces of the mirror pair. Such isomorphisms are called the **Mirror Maps**.
Physics hands us two trilinear forms called Yukawa couplings:

- **A-model YC**: \((T_{M_{\text{kah}}}^3 \rightarrow \mathbb{C})\);
- **B-model YC**: \((T_{M_{\text{compl}}}^3 \rightarrow \mathbb{C})\).

Mirror symmetry postulates that such functions should get identified via the mirror maps!

This is how mirror symmetry makes enumerative predictions about rational curves in CY threefolds.
Physics hands us two trilinear forms called **Yukawa couplings**:

- **A-model YC**: \((T_{M_{kah}})^3 \rightarrow \mathbb{C}\);
- **B-model YC**: \((T_{M_{compl}})^3 \rightarrow \mathbb{C}\).

Mirror symmetry postulates that such functions should get identified via the mirror maps!

This is how mirror symmetry makes **enumerative predictions** about rational curves in CY threefolds.
A CY threefold X is a projective threefold (possibly with mild singularities) such that:

- $K_X \cong \mathcal{O}_X$.
- $H^i(X, \mathcal{O}_X) = 0$, for $i = 1, 2$.

Definition
Combining the above definition with Serre duality and $h^{p,q} = h^{q,p}$ we obtain that the Hodge diamond of a CY threefold is:

\[
\begin{array}{ccc}
 b_6 & : & 1 \\
 b_5 & : & 0 \\
 b_4 & : & 0 \quad h^{1,1} \quad h^{2,1} \quad 0 \\
 b_3 & : & 1 \quad h^{2,1} \quad h^{2,1} \quad 0 \\
 b_2 & : & 0 \quad h^{1,1} \quad 0 \\
 b_1 & : & 0 \\
 b_0 & : & 1
\end{array}
\]
A kahler form ω is a closed $(1, 1)$ (real) form such that ω^3 is non-degenerate. The kahler cone $\mathcal{K}(X)$ is the space of all possible kahler forms. It is an open subset of $H^{1,1}(X, \mathbb{R})$.
A **kahler form** ω is a closed $(1, 1)$ (real) form such that ω^3 is non-degenerate.

The **kahler cone** $\mathcal{K}(X)$ is the space of all possible kahler forms. It is an open subset of $H^{1,1}(X, \mathbb{R})$.
The complexified kahler moduli space of X is

$$M_{kah} := H^2(X, \mathbb{R})/H^2(X, \mathbb{Z}) + iK(X).$$

A basis $\{C_\beta\}$ of $H_2(X, \mathbb{Z})$ gives coordinates (called kahler parameters) on M_{kah},

$$z_i = \int_{C_\beta} B + i\omega$$

only defined up to periods.
The complexified kahler moduli space of X is

$$M_{kah} := \frac{H^2(X, \mathbb{R})}{H^2(X, \mathbb{Z})} + i\mathcal{K}(X).$$

A basis $\{C_{\beta}\}$ of $H_2(X, \mathbb{Z})$ gives coordinates (called kahler parameters) on M_{kah},

$$z_i = \int_{C_{\beta}} B + i\omega$$

only defined up to periods.
If $\text{Pic}(X) = \mathbb{Z} = \langle H \rangle$, then

$$M_{\text{kah}} = \mathbb{R}/\mathbb{Z} + i\mathbb{R}_{>0}$$

is equivalent to the punctured disk Δ^* via the exponential coordinates

$$q = e^{2\pi iz}$$
For higher Picard number, a **framing** is a choice of a basis for $H^2(X, \mathbb{Z})$, that identifies a **simplicial cone** in $\overline{\mathcal{K}}(X)$.

An exponential transformation from the kahler parameters identifies the corresponding portion in M_{kah} with a punctured polydisc.
The Yukawa coupling

For $D_1, D_2, D_3 \in H^2(X, \mathbb{Z})$, define:

$$\langle D_1, D_2, D_3 \rangle := D_1 \cdot D_2 \cdot D_3 + \sum_{0 \neq \beta \in H_2(X,\mathbb{Z})} \langle D_1, D_2, D_3 \rangle^g_{\beta} \cdot q^{\beta},$$

where

$$\langle D_1, D_2, D_3 \rangle^g_{\beta} = \int_{[\overline{M}_{0,3}(X,\beta)]^{vir}} \text{ev}_1^*(D_1) \cdot \text{ev}_2^*(D_2) \cdot \text{ev}_3^*(D_3)$$

is a three pointed Gromov-Witten invariant for X.

Note: from the above formula we can extract, after correcting for multiple cover contributions, the (virtual) number of rational curves on the threefold in any given homology class.
Deformation spaces

Idea: the moduli space of complex structures is too complicated, so we study it locally.

A deformation space for X is the data illustrated in the following universal property diagram:

$$
\begin{array}{cccc}
\mathcal{X} & \longrightarrow & U \\
\downarrow & & \downarrow \\
S & \longrightarrow & Def(X) \\
\downarrow & & \\
X_0 & & \\
\end{array}
$$
Deformation spaces

Idea: the moduli space of complex structures is too complicated, so we study it locally.

A deformation space for X is the data illustrated in the following universal property diagram:

$$\begin{array}{c}
X \\
\downarrow \\
S
\end{array} \longrightarrow \begin{array}{c}
X \\
\downarrow \\
X_0
\end{array} \longrightarrow \begin{array}{c}
\text{Def}(X) \\
\downarrow \\
U
\end{array}$$
Facts and observations

1. The tangent space to $\text{Def}(X)$ at x_0 is classically identified with $H^1(X, T_X)$.

2. For a CY threefold, the choice of a global non-vanishing holomorphic 3-form gives an isomorphism

$$H^1(X, T_X) \cong H^1(X, \Lambda^2 \Omega_X) = H^{2,1}(X)$$

(⇒ symmetry in the Hodge diamond of a mirror pair)

3. **Bogomolov-Tian-Todorov theorem:** for a CY threefold, the deformation problem is unobstructed. (i.e. any infinitesimal deformation can be integrated).

4. A family $\mathcal{X} \to S$ induces a map $T_{S,s_0} \to T_{\text{Def}(X)}$ called the Kodaira-Spencer morphism. If we assume it to be an isomorphism, we can work on the tangent space of a concrete family rather than on $T_{\text{Def}(X)}$.

Renzo Cavalieri
The tangent space to $\text{Def}(X)$ at x_0 is classically identified with $H^1(X, T_X)$.

For a CY threefold, the choice of a global non-vanishing holomorphic 3-form gives an isomorphism

$$H^1(X, T_X) \cong H^1(X, \wedge^2 \Omega_X) = H^{2,1}(X)$$

(⇒ symmetry in the Hodge diamond of a mirror pair)

Bogomolov-Tian-Todorov theorem: for a CY threefold, the deformation problem is unobstructed. (i.e. any infinitesimal deformation can be integrated).

A family $\mathcal{X} \to S$ induces a map $T_{S,s_0} \to T_{\text{Def}(X)}$ called the Kodaira-Spencer morphism. If we assume it to be an isomorphism, we can work on the tangent space of a concrete family rather than on $T_{\text{Def}(X)}$.

Renzo Cavalieri
The tangent space to $\text{Def}(X)$ at x_0 is classically identified with $H^1(X, T_X)$.

For a CY threefold, the choice of a global non-vanishing holomorphic 3-form gives an isomorphism

$$H^1(X, T_X) \cong H^1(X, \Lambda^2 \Omega_X) = H^{2,1}(X)$$

(\Rightarrow symmetry in the Hodge diamond of a mirror pair)

Bogomolov-Tian-Todorov theorem: for a CY threefold, the deformation problem is unobstructed. (i.e. any infinitesimal deformation can be integrated).

A family $\mathcal{X} \to S$ induces a map $T_{S,s_0} \to T_{\text{Def}(X)}$ called the Kodaira-Spencer morphism. If we assume it to be an isomorphism, we can work on the tangent space of a concrete family rather than on $T_{\text{Def}(X)}$.
1. The tangent space to $\text{Def}(X)$ at x_0 is classically identified with $H^1(X, T_X)$.

2. For a CY threefold, the choice of a global non-vanishing holomorphic 3-form gives an isomorphism

$$H^1(X, T_X) \cong H^1(X, \Lambda^2 \Omega_X) = H^{2,1}(X)$$

(⇒ symmetry in the Hodge diamond of a mirror pair)

3. **Bogomolov-Tian-Todorov theorem:** for a CY threefold, the deformation problem is unobstructed. (i.e. any infinitesimal deformation can be integrated).

4. A family $\mathcal{X} \rightarrow S$ induces a map $T_{S,s_0} \rightarrow T_{\text{Def}(X)}$ called the **Kodaira-Spencer morphism**. If we assume it to be an isomorphism, we can work on the tangent space of a concrete family rather than on $T_{\text{Def}(X)}$.
Given a family of CY threefolds $\pi : \mathcal{X} \to S$ we can define the Hodge bundle to be

$$E := R^3\pi_* (\mathbb{C}) \otimes O_S.$$

What is going on:

$$H^3(\mathcal{X}_s, \mathbb{C}) \to E \quad \downarrow \quad s \to S$$
Given a family of CY threefolds $\pi : X \to S$ we can define the Hodge bundle to be

$$E := R^3\pi_*(\mathbb{C}) \otimes O_S.$$

What is going on:

$$H^3(X_s, \mathbb{C}) \to E \quad \downarrow \quad \downarrow$$

$$s \quad \to \quad S$$
A basis $\{\sigma_i\}$ for $H^3(X, \mathbb{Z})$ gives a local frame for E: any local section is

$$\sigma = \sum f_i(s) \sigma_i(s).$$

Gauss-Manin connection:

$$\nabla_{\frac{\partial}{\partial s_j}} \sigma = \sum \frac{\partial f_i}{\partial s_j} \sigma_i.$$
A basis $\{\sigma_i\}$ for $H^3(X, \mathbb{Z})$ gives a local frame for E: any local section is

$$\sigma = \sum f_i(s)\sigma_i(s).$$

Gauss-Manin connection:

$$\nabla_{\partial/\partial s_j} \sigma = \sum \frac{\partial f_i}{\partial s_j} \sigma_i.$$
The Yukawa Coupling

We can now define a cubic form on $T_{\text{Def}}(X)^{KS} \cong T_{S,s}$. Choose a family of Calabi-Yau forms $\Omega(s)$ (non-vanishing $(3,0)$ forms).

$$\left\langle \frac{\partial}{\partial s_1}, \frac{\partial}{\partial s_2}, \frac{\partial}{\partial s_3} \right\rangle := \int_X \Omega \wedge \nabla \frac{\partial}{\partial s_1} \nabla \frac{\partial}{\partial s_2} \nabla \frac{\partial}{\partial s_3} \Omega$$
We can now define a cubic form on $T_{\text{Def}}(X)^{KS} \cong T_{S,s}$. Choose a family of Calabi-Yau forms $\Omega(s)$ (non-vanishing $(3,0)$ forms).

$$\left\langle \frac{\partial}{\partial s_1}, \frac{\partial}{\partial s_2}, \frac{\partial}{\partial s_3} \right\rangle := \int_X \Omega \wedge \nabla \frac{\partial}{\partial s_1} \nabla \frac{\partial}{\partial s_2} \nabla \frac{\partial}{\partial s_3} \Omega$$
We can now define a cubic form on $T_{\text{Def}}(X)^{KS} \simeq T_{S,s}$.

Choose a family of Calabi-Yau forms $\Omega(s)$ (non-vanishing $(3,0)$ forms).

$$\left\langle \frac{\partial}{\partial s_1}, \frac{\partial}{\partial s_2}, \frac{\partial}{\partial s_3} \right\rangle := \int_X \Omega \wedge \nabla \frac{\partial}{\partial s_1} \nabla \frac{\partial}{\partial s_2} \nabla \frac{\partial}{\partial s_3} \Omega$$
third derivatives are necessary to obtain something non-trivial, by Griffiths transversality.

the coupling depends on the choice of $\Omega(s)$. Any two Calabi-Yau families differ by a non-vanishing holomorphic function $f(s)$, and the coupling transforms by multiplication by $f^2(s)$.
Remarks

1. Third derivatives are necessary to obtain something non-trivial, by Griffiths transversality.

2. The coupling depends on the choice of $\Omega(s)$. Any two Calabi-Yau families differ by a non-vanishing holomorphic function $f(s)$, and the coupling transforms by multiplication by $f^2(s)$.
The Mirror Map

Mirror Map “=” a set of canonical coordinates q on $Def(X)$ that we can identify with the q’s on (part of) M_{kah} coming from the choice of a framing.

Observation: on the kahler side $q = 0$ corresponded to a degenerate kahler metric. This suggests that we should try and “center” our canonical coordinates somewhere on the “boundary” of the complex moduli space.

Simplification: from now on, let us restrict our attention to the situation of $dim(Def(X)) = 1$ and look very locally around some point. I.e., we consider families $X \rightarrow \Delta^*$.

Renzo Cavalieri Mirror Symmetry
The Mirror Map

Mirror Map “=” a set of canonical coordinates \(q \) on \(\text{Def}(X) \) that we can identify with the \(q \)'s on (part of) \(M_{kah} \) coming from the choice of a framing.

Observation: on the kahler side \(q = 0 \) corresponded to a degenerate kahler metric. This suggests that we should try and “center” our canonical coordinates somewhere on the “boundary” of the complex moduli space.

Simplification: from now on, let us restrict our attention to the situation of \(\text{dim}(\text{Def}(X)) = 1 \) and look very locally around some point. I.e., we consider families

\[
\mathcal{X} \rightarrow \Delta^*.
\]
The Mirror Map

Mirror Map “=” a set of canonical coordinates q on $\text{Def}(X)$ that we can identify with the q’s on (part of) M_{kah} coming from the choice of a framing.

Observation: on the kahler side $q = 0$ corresponded to a degenerate kahler metric. This suggests that we should try and “center” our canonical coordinates somewhere on the “boundary” of the complex moduli space.

Simplification: from now on, let us restrict our attention to the situation of $\dim(\text{Def}(X)) = 1$ and look very locally around some point. I.e., we consider families

$$\mathcal{X} \to \Delta^*.$$
For a fixed pair \((X, \Omega)\), the period map is

\[
P_{X,\Omega} : H_3(X, \mathbb{C}) \quad \beta \quad \mapsto \quad \mathbb{C} \\
\quad \beta \quad \mapsto \quad \int_{\beta} \Omega.
\]

Local torelli tells us the period map is a local coordinate for the complex moduli space.

Problems:

1. for a family \(X \to \Delta^*\) we can define a period map only on the universal cover \(\mathcal{H}\) of the punctured disc.

\[
P(z) := P_{X_z,\Omega(z)}
\]

2. This definition still depends upon the choice of a family of Calabi-Yau forms.
For a fixed pair (X, Ω), the period map is

$$P_{X,\Omega} : H_3(X, \mathbb{C}) \to \mathbb{C}$$

$$\beta \quad \mapsto \quad \int_{\beta} \Omega.$$

Local torelli tells us the period map is a local coordinate for the complex moduli space.

Problems:

1. for a family $X \to \Delta^*$ we can define a period map only on the universal cover \mathcal{H} of the punctured disc.

$$P(z) := P_{X_z,\Omega(z)}$$

2. This definition still depends upon the choice of a family of Calabi-Yau forms.
For a fixed pair \((X, \Omega)\), the period map is
\[
P_{X,\Omega} : \ H_3(X, \mathbb{C}) \longrightarrow \mathbb{C} \\
\beta \mapsto \int_{\beta} \Omega.
\]

Local torelli tells us the period map is a local coordinate for the complex moduli space.

Problems:

1. for a family \(X \rightarrow \Delta^*\) we can define a period map only on the universal cover \(\mathcal{H}\) of the punctured disc.

 \[
P(z) := P_{X_z,\Omega}(z)
 \]

2. This definition still depends upon the choice of a family of Calabi-Yau forms.
\[P(z + 1) = P(z) \circ T, \]

where \(T : H_3(X, \mathbb{C}) \to H_3(X, \mathbb{C}) \) is a linear map called monodromy transformation.

If we were lucky enough to have a basis for \(H_3(X, \mathbb{C}) \) such that

\[
T = \begin{bmatrix}
1 & n & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{bmatrix},
\]

we could simultaneously solve problems (1) and (2) by setting...
Monodromy

\[P(z + 1) = P(z) \circ T, \]

where \(T : H_3(X, \mathbb{C}) \rightarrow H_3(X, \mathbb{C}) \) is a linear map called monodromy transformation.

If we were lucky enough to have a basis for \(H_3(X, \mathbb{C}) \) such that

\[
T = \begin{bmatrix}
1 & n & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{bmatrix},
\]

we could simultaneously solve problems (1) and (2) by setting

Renzo Cavalieri
Mirror Symmetry
Canonical coordinates

\[w(z) := \frac{\int_{A_1} \Omega(z)}{\int_{A_0} \Omega(z)} \]

and the *canonical coordinate* (recall \(s = e^{2\pi i z} \)):

\[q(s) := e^{2\pi i w} \]

Such luck happens only around special points in the boundary of the complex moduli space, called *large complex structure limit points*.
Canonical coordinates

$$w(z) := \frac{\int_{A_1} \Omega(z)}{\int_{A_0} \Omega(z)}$$

and the canonical coordinate (recall $s = e^{2\pi iz}$):

$$q(s) := e^{2\pi iw}$$

Such luck happens only around special points in the boundary of the complex moduli space, called large complex structure limit points.
The periods of a family of CY threefolds are the solutions of a **GKZ** system of differential equations, called **Picard-Fuchs** equations.

The technology we have developed this semester allows us to systematically:

1. find the solutions to the Picard-Fuchs equations.
2. identify a family centered around a large complex structure limit point.
3. extract the basis vectors necessary to define canonical coordinates.

Renzo Cavalieri
Mirror Symmetry
The Mirror conjecture

It is possible to correspond:

<table>
<thead>
<tr>
<th>$\mathcal{X} \to (\Delta^*)^s$</th>
<th>\leftrightarrow</th>
<th>\check{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a large CS limit point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>canonical coordinates q</th>
<th>\leftrightarrow</th>
<th>a framing on $\mathcal{K}(\check{X})$ giving coordinates q for M_{kah}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(2, 1)-YC (Quantum Cohomology)</th>
<th>\leftrightarrow</th>
<th>(1, 1)-YC</th>
</tr>
</thead>
</table>
The explicit matching of the Yukawa couplings will allow us to compute the number of rational curves on the quintic threefold in \mathbb{P}^4.
The explicit matching of the Yukawa couplings will allow us to compute the number of rational curves on the quintic threefold in \mathbb{P}^4.
Stay tuned!