Affine Geometry
and the Discrete Legendre Transform

Andrey Novoseltsev

Department of Mathematics
University of Washington

April 25, 2008
Outline

1 Combinatorial Constructions in Mirror Symmetry
2 Integral Tropical Manifolds
3 Discriminant Locus
4 Local Monodromy
5 Functions on Tropical Manifolds
6 Discrete Legendre Transform
Hypersurfaces in toric varieties coming from reflexive polytopes.
Duality: $\Delta \leftrightarrow \Delta^\circ$.
These polygons are polar (and we will see them again):
Complete intersections in toric varieties coming from NEF-partitions of reflexive polytopes.

Duality: \(\{ \Delta_1, \ldots, \Delta_r \} \leftrightarrow \{ \nabla_1, \ldots, \nabla_r \} \), such that

\[
\Delta = \text{Conv} \{ \Delta_1, \ldots, \Delta_r \}, \quad \Delta^\circ = \nabla_1 + \cdots + \nabla_r,
\]

\[
\nabla = \text{Conv} \{ \nabla_1, \ldots, \nabla_r \}, \quad \nabla^\circ = \Delta_1 + \cdots + \Delta_r.
\]
Calabi-Yau manifolds in Grassmannians and (partial) flags. Duality is obtained using degeneration to toric varieties.

Gross and Siebert propose another degeneration approach. Duality: discrete Legendre transform of a polarized positive integral tropical manifold $(B, P, \varphi) \leftrightarrow (\tilde{B}, \tilde{P}, \tilde{\varphi})$.

Let's make sense of the last sentence!
An integral (or lattice) rational convex polyhedron σ is the (possibly unbounded) intersection of finitely many closed affine half-spaces in \mathbb{R}^n with at least one vertex, s.t. functions defining these half-spaces can be taken with rational coefficients and all vertices are integral. Let LPoly be the category of integral convex polyhedra with integral affine isomorphisms onto faces as morphisms.

An integral polyhedral complex is a category \mathcal{P} and a functor $F : \mathcal{P} \rightarrow \text{LPoly}$ s.t. if $\sigma \in F(\mathcal{P})$ and τ is a face of σ, then $\tau \in F(\mathcal{P})$.

To avoid self-intersections: there is at most one morphism between any two objects of \mathcal{P}. (This requirement is not essential.)
Topological Manifold and Tangent Spaces

Definition

Let B be the topological space associated to \mathcal{P}: the quotient of $\bigcup_{\sigma \in \mathcal{P}} F(\sigma)$ by the equivalence relation of face inclusion.

From now on we will denote $F(\sigma)$ just by σ and call them cells.

Definition

$\Lambda_\sigma \cong \mathbb{Z}^{\dim \sigma}$ is the free abelian group of integral vector fields along σ.

For any $y \in \text{Int} \sigma$ there is a canonical injection $\Lambda_\sigma \to T_{\sigma, y}$, inducing the isomorphism $T_{\sigma, y} \cong \Lambda_{\sigma, \mathbb{R}} = \Lambda_\sigma \otimes_{\mathbb{Z}} \mathbb{R}$.

Using the exponential map, we can identify σ with a polytope $\tilde{\sigma} \subset T_{\sigma, y}$. (Different choices of y will correspond to translations of $\tilde{\sigma}$.)
Definition

Let N_{τ} be a lattice of rank k and $N_{\tau}^{\mathbb{R}} = N_{\tau} \otimes_{\mathbb{Z}} \mathbb{R}$. A *fan structure* along $\tau \in \mathcal{P}$ is a continuous map $S_{\tau} : U_{\tau} \to N_{\tau}^{\mathbb{R}}$, where U_{τ} is the open star of τ, s.t.

- $S_{\tau}^{-1}(0) = \text{Int } \tau$
- for each $e : \tau \to \sigma$ the restriction $S_{\tau}|_{\text{Int } \sigma}$ is induced by an epimorphism $\Lambda_{\sigma} \to W \cap N_{\tau}$ for some vector subspace $W \subset N_{\tau}^{\mathbb{R}}$
- cones $K_e = \mathbb{R}_{\geq 0} S_{\tau}(\sigma \cap U_{\tau})$, $e : \tau \to \sigma$, form a finite fan Σ_{τ} in $N_{\tau}^{\mathbb{R}}$
Tropical Manifold

Definition

If \(\tau \subset \sigma \), the \textit{fan structure along} \(\sigma \) \textit{induced by} \(S_\tau \) is the composition

\[
U_\sigma \rightarrow U_\tau \xrightarrow{S_\tau} N_\tau,\mathbb{R} \rightarrow N_\tau,\mathbb{R}/L_\sigma = N_\sigma,\mathbb{R},
\]

where \(L_\sigma \subset N_\mathbb{R} \) is the linear span of \(S_\tau(\text{Int} \sigma) \).

Definition

An \textit{integral tropical manifold} of dimension \(n \) is a (countable) integral polyhedral complex \(\mathcal{P} \) with a fan structure \(S_v : U_v \rightarrow N_v,\mathbb{R} \simeq \mathbb{R}^n \) at each vertex \(v \in \mathcal{P} \) s.t.

- for any vertex \(v \) the support \(|\Sigma_v| = \bigcup_{C \in \Sigma_v} C \) is (non-strictly) convex with nonempty interior;
- if \(v \) and \(w \) are vertices of \(\tau \), then the fan structures along \(\tau \) induced from \(S_v \) and \(S_w \) are equivalent.
Let Δ be a reflexive polytope.
Let $\mathcal{P} = \partial \Delta$.
The fan structures are given by projections along the vertices.
Fan structures at vertices define an affine structure on B away from the closed discriminant locus Δ of codimension two.

For each bounded $\tau \in \mathcal{P}$, s.t. $\dim \tau \neq 0$, n, choose $a_\tau \in \text{Int} \, \tau$:
Constructing Discriminant Locus

- For each unbounded τ, s.t. $\dim \tau \neq n$, choose a $0 \neq a_\tau \in \Lambda_{\tau,\mathbb{R}}$, s.t. $a_\tau + \tau \subset \tau$.

- For each chain $\tau_1 \subset \cdots \subset \tau_{n-1}$ with $\dim \tau_i = i$ and τ_i bounded for $i \leq r$, where $r \geq 1$, let
 \[
 \Delta_{\tau_1 \cdots \tau_{n-1}} = \text{Conv} \{ a_{\tau_i} : 1 \leq i \leq r \} + \sum_{i>r} \mathbb{R}_{\geq 0} \cdot a_{\tau_i} \subset \tau_{n-1}.
 \]

- Let Δ be the union of such polyhedra.
Constructing Discriminant Locus

(Only “visible” half of Δ is shown for the bounded case.)
Remarks on Discriminant Locus

- If $\varrho \in \mathcal{P}$ and $\dim \varrho = n - 1$, the connected components of $\varrho \setminus \Delta$ are in bijection with the vertices of ϱ.
- Interiors of top dimensional cells and fan structures at vertices define an affine structure on $B \setminus \Delta$ (fan structures give charts via the exponential maps).
- This defines a flat connection on $T_{B\setminus\Delta}$ which we may use for parallel transport.
- There is some flexibility in constructing Δ.
- “Generic” discriminant locus: coordinates of a_τ are “as algebraically independent as possible.” Then Δ contains no rational points.
Choose the following data:

- $\omega \in \mathcal{P}$ — a bounded edge (i.e. a one-dimensional cell)
- v^+ and v^- — vertices of ω
- $\varrho \in \mathcal{P}$, $\dim \varrho = n - 1$, $\varrho \not\subset \partial B$, $\omega \subset \varrho$
- σ^+ and σ^- — top dimensional cells containing ϱ

Follow the change of affine charts given by

- the fan structure at v^+
- the polyhedral structure of σ^+
- the fan structure at v^-
- the polyhedral structure of σ^-
- again the fan structure at v^+
Local Monodromy

- We obtain a transformation $T_{\omega \varrho} \in \text{SL}(\Lambda_{v^+})$, where Λ_{v^+} is the lattice of integral tangent vectors to B at the point v^+. (Not the integral vector fields along the zero-dimensional face v^+!)
- Let $d_\omega \in \Lambda_\omega \subset \Lambda_{v^+}$ be the primitive vector from v^+ to v^-.
- Let $\tilde{d}_{\varrho} \in \Lambda_{\varrho}^\perp \subset \Lambda_{v^+}^*$ be the primitive vector s.t. $\langle \tilde{d}_{\varrho}, \sigma^+ \rangle \geq 0$.
- Then $T_{\omega \varrho}(m) = m + \chi_{\omega \varrho} \langle m, \tilde{d}_{\varrho} \rangle d_\omega$ for some constant $\chi_{\omega \varrho}$.
- $\chi_{\omega \varrho}$ is independent on the ordering of v^\pm and σ^\pm.
- If $m \in \Lambda_{\varrho}$, then $T_{\omega \varrho}(m) = m$.
- For any m we have $T_{\omega \varrho}(m) - m \in \Lambda_{\varrho}$.
- $\chi_{\omega \varrho} \geq 0$ for “geometrically meaningful manifolds”.
- If all $\chi_{\omega \varrho} \geq 0$, B is called positive.
- The affine structure extends to a neighborhood of $\tau \in \mathcal{P}$ iff $\chi_{\omega \varrho} = 0$ for all ω and ϱ s.t. $\omega \subset \tau \subset \varrho$.
Functions on Tropical Manifolds

Definition
An *affine function* on an open set $U \subset B$ is a continuous map $U \to \mathbb{R}$ that is affine on $U \setminus \Delta$.

Definition
A *piecewise-linear (PL) function* on U is a continuous map $\varphi : U \to \mathbb{R}$ s.t. for all fan structures $S_\tau : U_\tau \to N_{\tau,\mathbb{R}}$ along $\tau \in \mathcal{P}$ we have $\varphi|_{U \cap U_\tau} = \lambda + S_\tau^\ast(\varphi_\tau)$ for some affine function $\lambda : U_\tau \to \mathbb{R}$ and a function $\varphi_\tau : N_{\tau,\mathbb{R}} \to \mathbb{R}$ which is PL w.r.t. the fan Σ_τ.

(This definition ensures that φ is “good enough” near Δ.)
Multivalued PL Functions and Polarizations

Definition

A multivalued piecewise-linear (MPL) function φ on U is a collection of PL functions $\{\varphi_i\}$ on an open cover $\{U_i\}$ of U s.t. φ_i’s differ by affine functions on overlaps.

MPL functions can be given by specifying maps $\varphi_\tau : N_{\tau, \mathbb{R}} \to \mathbb{R}$. All of the above definitions can be restricted to integral functions in the obvious way.

Definition

If all local PL representatives of an integral MPL function φ are strictly convex, φ is a polarization of (B, \mathcal{P}) and $(B, \mathcal{P}, \varphi)$ is a polarized integral tropical manifold.

(If $\partial B \neq \emptyset$, we also require that $|\Sigma_\tau|$ is convex for every $\tau \in \mathcal{P}$.)
Example of a Polarization

- Suppose \((B, \mathcal{P})\) is constructed from a reflexive polytope \(\Delta\).
- Let \(\psi\) be a PL function on the fan generated by \(\Delta\), s.t. \(\psi|_{\partial \Delta} \equiv 1\).
- For each vertex \(v\) choose an integral affine function \(\psi_v\) s.t. \(\psi_v(v) = 1 = \psi(v)\) and let \(\varphi_v = \psi - \psi_v\) on \(U_v\).
The discrete Legendre transform is a duality transformation of the set of polarized (positive) integral tropical manifolds $(B, P, \varphi) \leftrightarrow (\tilde{B}, \tilde{P}, \tilde{\varphi})$.

As a category, \tilde{P} is the opposite of P.

The functor $\tilde{F} : \tilde{P} \to \textbf{LPoly}$ is given by $\tilde{F}(\tilde{\tau}) = \text{Newton}(\varphi_\tau)$, where $\tilde{\tau} = \tau$ as objects and $\text{Newton}(\varphi_\tau)$ is the Newton polyhedron of φ_τ:

$$\text{Newton}(\varphi_\tau) = \left\{ x \in \mathbb{N}_{\tau, \mathbb{R}}^* : \varphi_\tau + x \geq 0 \right\}.$$

For the fans from our example we get:

\[\left\langle 2, > \right\rangle \quad \left\langle 1, > \right\rangle \quad \text{-1} \quad 2 \]
Discrete Legendre Transform

- These data are enough to construct \bar{B} as a topological manifold.
- It also can be obtained as the dual cell complex of (B, P) using the barycentric subdivision, which gives a homeomorphism between B and \bar{B}, but is not a polyhedral complex.
- In our example we get the boundary of the polar reflexive polygon:
We still need to give fan structures and a polarization.

Let $\sigma \in \mathcal{P}$, $\dim \sigma = n$. Then $\tilde{\sigma}$ is a vertex.

Let $\Sigma_{\tilde{\sigma}}$ be the normal fan of σ in $\Lambda^*_\sigma,\mathbb{R}$.

Using the parallel transport, we can identify $\Lambda^*_\sigma,\mathbb{R}$ with $\Lambda^*_v,\mathbb{R} = T^*_B,\mathbb{R}$ for a vertex v of σ.

Let $\tilde{\sigma} \subset T_{B,v}$ be the inverse image of σ under the exponential map.

Let $\tilde{\varphi}_{\tilde{\sigma}} : |\Sigma_{\tilde{\sigma}}| \to \mathbb{R}$ be given by $\tilde{\varphi}_{\tilde{\sigma}}(m) = -\inf(m(\tilde{\sigma}))$.

If $\Sigma_{\tilde{\sigma}}$ is incomplete, extend $\tilde{\varphi}_{\tilde{\sigma}}$ to $\Lambda^*_\tau,\mathbb{R}$ by infinity.

A different choice of v corresponds to the translation of $\tilde{\sigma}$ by an integral vector and the change of $\tilde{\varphi}_{\tilde{\sigma}}$ by an integral affine function.

In our example we get the following (same as if we repeated construction with vectors!):

![Diagram](image-url)
Consider the cones

\[\{ m \in \Lambda^*_{v,R} : m(\tilde{\sigma}) \geq 0 \} \in \Sigma_{\tilde{\sigma}}, \quad \{ m \in N^*_{v,R} : m(dS_v(\tilde{\sigma})) \geq 0 \} \in \Sigma^*_v. \]

\(dS_v \) is an integral affine identification of cones corresponding to cells containing \(v \) ("tangent wedges") in \(T_{B,v} \approx \Lambda_{v,R} \) and \(N_{v,R} \).

Cones above can be identified via \(dS^*_v : N^*_{v,R} \to \Lambda^*_{v,R} \).

These maps induce the fan structure at \(\tilde{\sigma} \).

This gives the polarized integral tropical manifold \((\tilde{B}, \tilde{P}, \tilde{\varphi})\).

Can take \(\tilde{\Delta} = \Delta \) (using homeomorphism \(B \to \tilde{B} \)).

Discrete Legendre transform of a positive manifolds is positive.
Thank you!