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Abstract

Suppose ¢ is a wildly ramified cover of germs of curves defined over an alge-
braically closed field of characteristic p. We study unobstructed deformations
of ¢ in equal characteristic, which are equiramified in that the branch locus
is constant and the ramification filtration is fixed. We show that the moduli
space M parametrizing equiramified deformations of ¢ is a subscheme of an
explicitly constructed scheme. This allows us to give an explicit upper and
lower bound for the Krull dimension dys of Mg. These bounds depend only
on the ramification filtration of ¢. When ¢ is an abelian p-group cover, we
use class field theory to show that the upper bound for dy is realized.
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1 Introduction

There are many open questions about Galois covers of curves in characteristic p
whose characteristic 0 analogues are well-understood. For example, consider a G-
Galois cover ¢ : Y — X of Riemann surfaces. Deformations of ¢ are parametrized
by a moduli space whose dimension, 3gx — 3 + |B| 4+ dim Aut(X — B), is determined
by the genus gy of X and the size |B| of the branch locus of ¢. By the Riemann-
Hurwitz formula, the genus of Y is determined by |G|, gx, |B| and the orders of the
inertia groups.

These statements are no longer true when ¢ : ) — X is a wildly ramified cover
of curves. In characteristic p, the number of unramified covers of a fixed affine curve
with a fixed Galois group is typically infinite. Not only can these covers be deformed
without varying X or the branch locus B of ¢, but they can often be distinguished
from each other by studying finer ramification invariants such as the conductor. The
genus of ) now depends on these finer ramification invariants.

Let k be an algebraically closed field of characteristic p > 0. Suppose X is a
smooth projective k-curve and B is a finite set of points of X'. Suppose G is a finite
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quotient of 71 (X — B). (When |B| is nonempty, these groups have been classified by
Raynaud [18] and Harbater [8] in their proof of Abhyankar’s Conjecture). Suppose
¢ :Y — X is a G-Galois cover of curves branched only at B.

An important problem is to understand the deformation theory of ¢. It is well-
known by the theory of formal patching [9] that deformations of ¢ satisfy a lo-
cal/global property. This theory allows one to simplify the question of deformations
of ¢ to the analogous question of deformations of an I-Galois cover ¢ : Y — X of
germs of curves. Here X is the germ of X at a branch point b, Y is the germ of )
at a ramification point n € p~1(b) and I is the inertia group of ¢ at n. (Likewise,
deformations of ) respecting the associated group action G — Aut())) satisfy a
local/global property, [2].)

Results. In this paper, we consider equal characteristic deformations of an I-
Galois cover ¢ of germs of curves. We study a functor F}, parametrizing unobstructed
deformations of ¢ which are equiramified in that the branch locus and ramification
filtration do not change. The main result, Theorem 4.6, states that there is a moduli
space M, representing the functor Fy, in a certain category. Furthermore, M, is a
subscheme of a direct product of schemes, each of which is a moduli space in its own
right and which can be explicitly described in terms of the ramification filtration of
¢. This allows us to give an explicit upper and lower bound for the Krull dimension
dy of My; these bounds depend only on the ramification filtration of ¢.

When [ is an abelian p-group, we strengthen this result in Corollary 4.8 using
class field theory. In this case, My is a direct product of copies of G, modulo an
action of F,. As a result, when I is an abelian p-group, we give an exact formula
for the Krull dimension d, of M, in terms of the breaks in the filtration of higher
ramification groups of ¢. Here the upper bound for d, is realized.

Corollary 3.12 shows that the upper bound for d, is also realized in the case
that I is a semi-direct product of the form (Z/p)¢ x Z/m. This type of inertia
group occurs when the projective curve ) is ordinary. When ) is ordinary, there
is also a major restriction on the ramification filtration of ¢. In this way, Corollary
3.12 is a generalization of part of the results of Cornelissen and Kato [3] who study
deformations of the type arising from ordinary projective curves.

The upper bound for d, is not always realized. We give an example of this in
Section 4.5 when p = 2 and when [ is the quaternion group of order 8.

Outline. Section 2 contains background information on the ramification of a wildly
ramified cover ¢ of germs of curves. We explain the connection between some de-
formations of ¢ and some A X p,,-covers where A is an elementary abelian p-group.
These A X p,,-covers play an important role in later sections. We give a detailed
description of their equations in Section 2.3.

In Section 3.4, we construct a moduli space which parametrizes these A X fi,,-
covers in a certain category, Theorem 3.11. It is a direct product of copies of G,



modulo an action by FTA|. Its Krull dimension can be explicity computed in terms
of the ramification filtration of the covers. As an application, in Section 3.5, we
generalize the dimension count of [3, Thm. 5.1(a)].

Sections 3.1 and 3.3 contain the precise definition of the deformation functor Fj.
In Section 3.2, we use a Galois action from [16] to study equiramified deformations of
¢ which have a constant quotient deformation. This Galois action acts non-trivially
only on an A-Galois subcover of ¢. It causes the set of wildly ramified /-Galois covers
which dominate a fixed quotient to form a principal homogeneous space under the
action of a group of A x p,,-Galois covers. The main results here are Theorem 3.3
and Corollary 3.8 which simplify the problem of equiramified deformations of ¢.

In Section 4, we prove Theorem 4.6 which states that there is a moduli space
representing Fj, and gives an upper and lower bound for its Krull dimension d,. The
method is to study equiramified deformations of a tower of covers using induction.
The results from Section 3 allow one to reduce the question of deformations of ¢
to the question of deformations of each of the steps in the tower. However, it is
difficult to verify whether the deformation is equiramified in a step-to-step manner.
We rephrase this issue in terms of an equiramified embedding problem.

The equiramified embedding problem has a solution in the case of abelian p-
groups. This yields the exact formula for d, in Corollary 4.8. We show in Section
4.5 that the equiramified embedding problem does not always have a solution and
thus the upper bound for dy is not always realized.

For a future application, we explain in Section 4.4 how the formula for d, can
be used to study the Krull dimension of M,[G]®F,. This can be seen for G = Z/p
in [2, Section 5.2].

I would like to thank D. Harbater and M. Raynaud for their invaluable feedback,
along with J. Achter, I. Bouw, G. Cornelissen, A. Tamagawa and the participants
of the conferences in Banff and in Leiden for their helpful suggestions.

2 (Galois covers of germs of curves

2.1 Structure of the inertia group

This section contains background material on the inertia group and ramification
filtration of a wildly ramified Galois cover of germs of curves.

Let k£ be an algebraically closed field of characteristic p > 0. Consider an ir-
reducible k-scheme (2. Let U = Spec(Oq[[u]]) and let £ be the closed point of U
defined by the equation v =0.

Inertia group. Suppose ¢ :Y — U is a Galois cover of normal irreducible germs
of Q-curves which is wildly ramified at the closed point n = ¢~(£) € Y. By [17,
Lemma 2.1.4], after an étale pullback of €2, the decomposition group and inertia



group over the generic point of 7 are the same and so the Galois group of ¢ is the
same as its inertia group.

Recall that the inertia group I at the generic point of 7 is of the form P x, Z/m
where |P| = p°¢ for some e > 0 and p ¥ m, [20, IV, Cor. 4]. Here ¢ denotes the
automorphism of P which determines the conjugation action of Z/m on P.

Ramification filtrations. Associated to the cover ¢, there are two filtrations of
I, namely the filtration of higher ramification groups Iz in the lower numbering
and the filtration of higher ramification groups /¢ in the upper numbering. Let 7
be a uniformizer of Oy at the generic point of . If ¢ € N, then [ is the normal
subgroup of all g € I such that g acts trivially on Oy /7!, Equivalently, I; =
{g € I|val(g(m) — ) > ¢+ 1}, [20, IV, Lemma 1]. If ¢ € R" and ¢ = |¢], then
I; = I.. Recall by Herbrand’s formula [20, IV, Section 3], that the filtration /¢ in
the upper numbering is given by I° = I; where ¢ = U(c) and U(c) = [;(I° : I*)dt.
Equivalently, ¢ = [ dt/(Io : I).

We say that j € NT is a lower jump of ¢ at n if I; # I;1;. In this case,
I;/I;41 ~ (Z/p)% for some ¢; € N, [20, IV, Cor. 3]. Then ¢; is the multiplicity
of 7. A rational number ¢ is an upper jump of ¢ at n if W(c) = j for some lower
jump j. Let ji,...,j. (resp. o1,...,0.) be the set of lower (resp. upper) jumps of
¢ at n written in increasing order with multiplicity. These are the positive breaks
in the filtration of ramification groups in the lower (resp. upper) numbering. By
[20, IV, Prop. 11], p 1 j; for any lower jump j;. Herbrand’s formula implies that
Ji = Jier = (03 — o) [1|/|1;;,

The number ¢ = o, is the conductor of ¢ at n; o is the largest ¢ € Q such that
inertia group /¢ is non-trivial in the filtration of higher ramification groups in the
upper numbering. (This indexing is slightly different than in [20], where the ideal
(z°t1) is the conductor of the extension of complete discrete valuation rings for a
given uniformizer x at the branch point.)

The ramification filtration in the upper numbering, the upper jumps, and the
conductor are preserved under quotients, [20, IV, Prop. 14].

An initial step in the filtration. We will study the deformations of ¢ by first
studying the ones which fix its I/A-Galois quotient for a suitable choice of A C I.

Lemma 2.1. Suppose ¢ : Y — U is an [-Galois cover with inertia group I =
Px,Z/m and conductor o as above. Then there exists A C 17 satisfying the following
conditions: A is central in P; A is normal in I; A is a nontrivial elementary abelian
p-group; and A is irreducible under the action of Z/m.

Proof. In [16, Lemma 2|, we show this follows immediately from [20, IV]. O

We fix A C P satisfying the conditions of Lemma 2.1. Let a be the positive
integer such that A ~ (Z/p)* and let ¢ = p*. Let A %, Z/m be the semi-direct



product determined by the restriction of the conjugation action of Z/m on P. Let
I =1/Aand P = P/A.

2.2 Structure of the Galois cover

Factoring the Galois cover. Consider an I-Galois cover ¢ : Y — U of germs of
Q-curves with conductor ¢ and a subgroup A satisfying the conditions of Lemma
2.1. This situation yields a factorization of ¢ which we denote

vOATY L x5

Here ¢ is A-Galois and ¢ is P-Galois. Also k o ¢ is I-Galois. Let ¢F = ¢ o ¢4
denote the P-Galois subcover Y — X of ¢.

The cover Kk : X — U is a Z/m-Galois cover. By Kummer theory, X =~
Spec(Oq[[z]]) for some z such that 2™ = u. The generator of Z/m takes z — ((x)
for some ¢ € k with order m. We choose a compatible system of roots of unity of k so
that ¢ = (,,. In this way, & yields an isomorphism Z/m =~ p,,. Let & = k71(£) € X
be the ramification point of x and the branch point of ¢

Let K (resp. K) be the function field of Y (resp. Y). By [6, Prop. 1.1], there
exists y € K and ry € K so that the equation for ¢4 is y? — y = T

Explanation of a Galois action on covers. The main point of Section 3.2
is that deformations of an [-Galois cover with constant I/A-Galois quotient are
related to A-Galois covers of a certain type. This relationship relies heavily on a
Galois action on wildly ramified germs of curves from [16, Section 2|. Before making
this relationship more precise, we give a brief explanation of the Galois action.

Naively speaking, one can try to modify ¢ by changing ¢* while keeping ¢
constant. This can be done by modifying the equation for ¢* to an equation of
the form y? —y = r4 + 1, for some r, € K. By [16, Lemma 3], the composition
¢ o ¢ will still be P-Galois if and only if r, is in the function field Og[[x]][z7!] of
X in addition, every P-Galois cover dominating ¢ occurs for some choice of 7, in
the function field of X. In this way, any modification of ¢ with fixed I/A-quotient
corresponds to a (possibly disconnected) A-Galois cover 1 : V' — X with equation
v —v=r,.

Furthermore, by [16, Lemma 5], the composition & o ¢ o ¢ will still be I-Galois
if and only if K 0 ¢ is an A X, p,,-Galois cover. Viewing r, as a Laurent series in x,
this places constraints on which of its coefficients can be non-zero. The ramification
filtration of ¢ will not change under this modification exactly when the conductor
of 1 is bounded above by mo, by [16, Proposition 7).

To summarize, this explains the basic idea of Section 3.2: deformations of an
I-Galois cover of curves with constant //A-Galois quotient correspond to A-Galois
covers ¢ : V' — X of germs of curves having conductor at most mo so that ko1 is
an A X, u,,-Galois cover. Luckily, it is easy to describe such A x, u,,-Galois covers.
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2.3 Equations for A x, u,,-Galois covers

Suppose ¥ : V — X is an A-Galois cover of germs of (2-curves so that x o1 is an
A X, pi,-Galois cover. By [6, Prop. 1.1], there exists v in the function field of V' so
that the equation for ¢ is v — v = r(z). Here r(z) € Oql[z]|[z7!].

The conductor of 1) can be determined explicitly in terms of r(z). The Laurent
series r(x) can be written as a sum of terms (r,)?" for t € N where r, € Og[[z]][z7"]
and where p divides no exponent of z in 7,. Let s; be the degree of r, in 27, We
define the prime-to-p degree of r(x) to be —min{s; | ¢ € N}. For example, 3 is the
prime-to-p degree of 272 + 273",

Lemma 2.2. There is exactly one break in the filtration of ramification groups of
. The conductor s of 1 equals the prime-to-p degree of r(x).

Recall that s € N* by the Hasse-Arf Theorem [20, V, Thm. 1] and that p 1 s.

Proof. The first claim follows from the fact that u,, acts irreducibly on A. For the
second claim, by [6, Prop. 1.2], there is a Z/p-Galois cover ¢/ : V' — X which is
a quotient of 1) and has equation v} — v; = r(z). The conductor of ¥ equals the
conductor of 9. The conductor and lower jump of ¢ are the same by Herbrand’s
formula. There is an isomorphism (over the generic geometric fibre of ) between
¢ and the Z/p-Galois cover v§ — vy = r(x)" where r(z)" = >, 7+ by Artin-Schreier
theory. By definition, this degree is prime-to-p and equals the prime-to-p degree of
r(x). By [21, Prop. VI.4.1], the lower jump of ¢ is the degree of r(z) in z~'. O

The congruence value of the conductor modulo m can be determined from the
semi-direct product A X, fi,.

Lemma 2.3. Associated to the ji,-Galois cover k : X — U and the group A X, pim,
there is a unique integer s, (such that 1 < s, < m) with the following property: for
any A-Galois cover 1 : V — X with conductor s so that ko is an A X, pi,-Galois
cover then s = s, mod m. Furthermore:

(1) ged(m, s,) = |Ker(¢)|;
(i) [Fp(Cat) - Fp] = a;
(iii) If cx’ is a term of r(x) € Ogl[x]|[x™]] for which ¢ # 0, then i = s, mod m.

Proof. Suppose ¢ : V — X is an A-Galois cover so that ko is an A %, u,,-Galois
cover. By the definition of A-Galois cover, there is an isomorphism between A
and Gal(V/X). There is a natural isomorphism between Gal(V/X) and F, where
v(v) = v+ v for v € F,. By the definition of &, there is an isomorphism between
i and Gal(X/U) where the generator takes z — (.

The semi-direct product A X, p,, determines an automorphism ¢((,,) € Aut(A)
so that ¢((n)(T) = Gu7Ct for T € A By [20, IV, Prop. 6.a], ¢, 7¢,,! = 27 for some
Z € [y, Let s, be the integer such that (J* =2z and 1 <5, < m.
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Suppose s is the conductor of ¥. For any 7 € A, the lower jump of ¢ for 7 is
equal to s by Lemma 2.2 and Herbrand’s Theorem. Furthermore, (5 = z by [20,
IV, Prop. 9]. Thus s = s, modulo m.

(i) For ¢ € pim, t(¢)(1) = ¢**7. Thus Ker(¢) is the subgroup of u,, consisting of
elements whose order divides s,. This subgroup has size ged(m, s,).

(ii) First, ¢ € F, since ¢ stabilizes A ~ F,. Second, the fact that A is irreducible
under ¢ implies that ¢ ¢ F . for any o’ < a. Thus F,(() = F,.

(iii) The equation v? — v = r(x) is invariant under the action ¢, :  — (,x. This
implies that (,, : v — (v and that the exponents of r(x) are all congruent
modulo m.

]

Lemma 2.4. Fori = 1,2, suppose v; : V; — X is an A-Galois cover with equation
vl —v; = ri(x) where ri(z) € Ogl[x]][z™!]. There is an isomorphism between the
A-Galois covers 1y and vy if and only if ro(x) = (ri(z) + d? — d for some ¢ € F,

and some d € Oq[[z]][z7].

One can also show that ko : Vi — U and k o)y : Vo — U are isomorphic as
A X, pm-Galois covers if and only if ¢; and 19 are isomorphic as A-Galois covers.

Proof. Suppose 71 (x) and ro(x) are such that there is an isomorphism [ between the
A-Galois covers ¥ and 1. Since [ is invertible, 3(ve) = (v; 4 d for some unit ¢ and
some d in the function field Og|[[z]][z!] of X. Thus (%! —(v;+d?—d = ro(x). Thus
(C7—C)vy = =% (z) — (d?—d) 4+ r2(x). This implies that ((? — ()v; is contained in
the function field of X which is only possible if ¢ € ;. Then ry(z) = (ri(z)+d?—d.

For the converse, if ro(x) = (ri(z) + d? — d, then there is an isomorphism (3
between v, and ¥, as A-Galois covers where F(vy) = (vy + d. O

An equation v? — v = r(x) for an A-Galois cover ¢ : V' — X is in standard form
if r(x) € Oq[z™'] and if ¢ does not divide the exponent of any term of r(z). Lemma
2.3 implies that the congruence value of the exponents of r(z) modulo m does not
change in the process of changing the equation for ¢ into standard form. To see
this, suppose cz’ is a term of r(z) for which 7 = ¢i; and ¢ # 0. Then (iii) implies
that ged(m,s,) divides ¢ and thus divides ;. Also (ii) implies that m/ged(m, s,)
divides ¢ — 1. Thus ¢ = ¢; mod m.

3 Deformations via a Galois action

We study the deformations of an I-Galois cover ¢, : Y, — U, of germs of k-
curves whose I /A-Galois quotient is constant. The equations for these deformations
can be related via a Galois action to the equations for A-Galois covers which are

7



easy to understand. In fact, we prove that the functor Fj, 4 which parametrizes
these deformations is isomorphic to another functor which parametrizes the A-Galois
covers. We give an explicit description of the moduli space that represents the latter
functor in a certain category and compute its Krull dimension.

3.1 Definition of deformation functor

Suppose ¢ = ¢ : Yy — U, is an [-Galois cover of normal irreducible germs of
k-curves which is wildly ramified at the closed point 1, = ¢~1(&,). Here U, =
Spec(k[[u]]) is the germ of a smooth k-curve at a closed point &.

Let C be the category of irreducible pointed k-schemes; we denote an object of
C by (£2,w) where Q is an irreducible k-scheme and w is the image of the chosen
morphism Spec(k) — €. Let Uy = Spec(Oql[u]]) and let &g be the closed point
defined by the equation u = 0. We denote by U, the fibre of U over w. For each
object (€2,w) of C, there is a natural morphism Ogq|[u]] — k[[u]] taking « — wu. This
yields a natural choice of isomorphism U, — U,,.

A deformation of ¢ over (2,w) is an [-Galois cover ¢q : Yo — Uq of normal
irreducible germs of (2-curves together with an isomorphism between ¢ and the fibre
of ¢pg over w as I-Galois covers of U,. Two deformations ¢q and ¢, over (£2,w)
are isomorphic if there is an isomorphism between them as [-Galois covers of the
Q-curve Ug which commutes with the isomorphisms between ¢ and their fibres over
w. A deformation is constant if it is isomorphic to the cover of germs of Q-curves
with constant fibres, namely the restriction over Ug of ¢ X, €2 : Yy X Q — Uy x4 €.

A deformation ¢q is equiramified if its branch locus consists of only the Q-point
&q and if it is totally ramified over the generic point of &,. For an equiramified
deformation, a result of Kato [12] implies that the degree of the ramification divisor
is the same for the fibre over w and for the generic geometric fibre, [16, Lemma 11].

Definition 3.1. Let F} (resp. Fj 4) be the contravariant deformation functor from
C to sets which associates to (€2, w) the set of isomorphism classes of equiramified
deformations of ¢ over (€2, w) (resp. for which the I/A-Galois quotient deformation
is constant).

The main result of Section 3.2 is that the functor Fj 4 is isomorphic to another
functor Fax,u,, - which we define now.

For an irreducible pointed k-scheme (€, w), let Xq = Spec(Oq|[z]]). Consider
the p,,-Galois cover k : Xq — Ugq of germs of (2-curves wimuation ™ = u and
Galois action x — (,x as in Section 2.2. Let &, be the closed point defined by the
equation = 0 and let X{, = Xq — {£,}-

Consider the group H4(€2) = Hom(m(X(,), A). We suppress the choice of base-
point of X{, from the notation. An element a € H4(Q2) may be identified with
the isomorphism class of an A-Galois cover ¢, : V — Xq branched only over the
closed point &,. The identity ag g of H4(€2) corresponds to the totally disconnected
A-Galois cover ¢ q : Indg‘ Xao — Xgq.



The automorphism ¢ of A induces a natural automorphism 7 of H4(£2). Let
H4(Q) be the subgroup of Hs(Q) fixed by 7. In other words, « is an element of
H4(Q) if and only if the composition ko1, : V — Ug is an (A X, ., )-Galois cover.

The conductor of o € H4(£2) is the conductor of v, over its generic geometric
fibre. Given o € QT, let H;°(12) be the subset of H4(2) consisting of elements « for
which the conductor of ¢, is at most mo. In fact, H;°(Q2) is a subgroup of H ().

Definition 3.2. Let Fay,,,, - be the contravariant A-Galois functor from C to sets
which associates to (€2, w) the subset of elements o € H;’(§2) for which the fibre of
1, over w is isomorphic to the totally disconnected cover g ,,.

3.2 Simplification of the deformation functor

We show that the functor Fy 4 parametrizing deformations of the I-Galois cover ¢
with constant //A-Galois quotient is isomorphic to the functor Fyuy,,,,, » parametriz-
ing A-Galois covers of a certain type. The advantage of this is that we can explicitly
describe a moduli space for the functor Fl4y,,,, - in a certain category, Section 3.4.

Theorem 3.3. The functors Fy s and Fax,,,, o are isomorphic.

Let (Q,w) be a pointed k-scheme. For the proof, we show that there is a functorial
bijection between the sets Fy 4(2,w) and Fax,p,.0(,w). In fact, the proof shows
that Fy 4(Q,w) and Fax,,,.0(€2,w) are isomorphic as groups, where the identity
element of F, 4(€2,w) is the constant deformation of ¢.

Proof. Let ¢fq (resp. ®oq) denote the constant deformation of the P-Galois sub-
cover ¢’ (resp. of the P-Galois subquotient ¢) of ¢ over Q.

The reduction of a P-Galois cover modulo A yields a P-Galois cover. Consider
the resulting morphism red4 : Hom(m (X)), P) — Hom(m (X)), P). Consider the
fibre H3($2) of red4 over ®o0- Then ¢f, corresponds to an element of this fibre.

Let Ha(Q2) = Hom(m (X(,),A). By [16, Lemma 3], H4(Q2) acts simply transi-
tively on the fibre Hz(Q2). Equivalently, the fibre H3(Q2) is a principal homogeneous
space for Ha(€2). Given an element ¢ of the fibre H;(Q), it follows that there
exists exactly one a € Ha() so that ¢g is the image of ¢{, under the action of
a. Conversely, given any a € H4(Q), the image of ¢{, under the action of o yields
a well-defined element ¢f, of the fibre H(Q). It follows that there is a functorial
bijection between P-Galois covers ¢ of normal germs of curves which are étale over
X{, and which dominate the P-Galois cover ¢, and elements o € H4(€2).

Let ¢q denote an element of Fj 4(€2,w). By definition, ¢q is (the isomorphism
class of) an equiramified deformation of ¢ with constant I/A-Galois quotient defor-
mation. In particular, the P-Galois subcover ¢f, of ¢q is a P-Galois cover of normal
germs of curves which is étale over X, and which dominates the P-Galois cover 5079.
As above, it yields an element ov € H4(€2). We now show that o € Fax,p,, +(S2,w).



We first consider the invariance of these covers under the pu,,-Galois action. The
composition x o gzﬁ{i q is an I-Galois cover. By [16, Lemma 5], the cover ko ¢§ is an
I-Galois cover if and only if « € H4(Q2). Thus o € H4(Q).

Let s be the conductor of a. The fact that ¢q is an equiramified deformation of
¢ implies that (over the complete local ring of €2 at w) it satisfies the hypotheses of
[16, Lemma 11]. As a result, the degree of the ramification divisor of ¢ is the same
over the generic geometric point of 2 and over w. In particular, the conductor oq
of ¢ equals the conductor o of ¢,. On the other hand, since ¢q is irreducible, its
conductor og is the maximum of the conductor of ¢ o (namely o) and the conductor
of k o a (namely s/m) by [16, Proposition 7]. Thus s < mo and o € H; ().

Since ¢gq is a deformation of ¢, the fibre of ¢q and of ¢y o over w are isomorphic.
This implies the fibre of ¢, over w is isomorphic to g, and so a € Fay, ..o (2, w).

Conversely, an element a € Fly,,,. »(£2,w) determines as above a P-Galois cover
ot of normal germs of curves dominating 5079. Let ¢ = kodl,. Then ¢q is I-Galois
by [16, Lemma 5]. The fact that the fibre of v, over w is isomorphic to ¢y, implies
that the fibre of ¢q over w is isomorphic to ¢. Then ¢q is a cover of irreducible
germs of curves since ¢ has that property. As a result, ¢q is a deformation of ¢ with
constant I /A-quotient deformation. Also ¢q is equiramified by [16, Proposition 7].
Thus the isomorphism class of ¢q is an element of Fy 4(Q2,w). ]

3.3 Equivalence classes of deformations

One can construct a moduli space of finite dimension representing the functor
Fas,pm.o (and thus also F, 4) but only at the expense of leaving the category of
pointed k-schemes. Here are two examples that illustrate how a moduli space for
deformations of a wildly ramified cover depends critically on the choice of category.

Example 3.4. Suppose ¢ is the Z/p-Galois cover y? —y = u 7. Let Q = Spec(k|[t])
and let w be the point ¢t = 0. The equation ¢! —y; = u™7 +t gives a deformation ¢q
of ¢ over (Q,w). Let Q' — Q be the étale cover 2P — z = t. The choice of a point
W' over w corresponds to the choice of a root of z? — z. There is an isomorphism
between the pullback of ¢q to (€',w') and the cover with equation y? —y = u™’
(where this isomorphism identifies y with y, — z). So this pullback is isomorphic to

the constant deformation of ¢ over ({2, ).

This example illustrates how the presence of nontrivial étale covers in the cat-
egory C of pointed k-schemes makes it difficult to construct a moduli space which
is fine, not coarse. For this reason, we switch to working with equal characteristic
complete local rings.

Let C be the category of spectra of equal characteristic complete local rings. It
is clear from Section 3.1 how to define the functors F, Fy 4, and Fax,,,, 0 o0 C. In
the category C all deformations will automatically be unobstructed.

10



Example 3.5. Suppose ¢ is the Z/p-Galois cover y? —y = u 7. In the category
C, one can construct a family of deformations of ¢ over Spec(k[[t]]) with infinite
dimension using the equations y” —y = u 7 + tu™"" for i € N.

The problem is that these deformations are all related via purely inseparable
extensions of k[[t]]. As in [17, Theorem 2.2.10], one can resolve this difficulty in the
category C by constructing a configuration space instead of a moduli space. Here we
instead choose to work with a category where finite purely inseparable morphisms
are invertible. In this category, there is a moduli space of finite Krull dimension
representing the functors Fi, 4 and Flay,,,, -, Section 3.4.

Definition 3.6. Let C’ be the category whose objects are the objects of the category
C and whose morphisms consist of all morphisms in C along with formal inverses to
finite purely inseparable morphisms between objects in C.

Note that any such finite purely inseparable morphism (sometimes called a radi-
cial morphism) is a composition of Frobenius morphisms [11, IV.2.5]. Thus the
category C' can be obtained by localizing the category ¢ by the multiplicative sys-
tem of morphisms which are powers of Frobenius [10, Prop. 3.1].

Suppose €2 and € are objects of C. Suppose ¢q (resp. ¢g) is a deformation
of ¢ over Q (resp. ). The deformations ¢ and ¢ are equivalent if there exists
an object Q" of C along with finite purely inseparable (possibly trivial) morphisms
m: Q" — Qand 7' : Q" — Q' so that the pullbacks 7*¢q and (7')*¢q are isomorphic
deformations of ¢ over Q”. In particular, if i : O — €0 is a finite purely inseparable
morphism then the pullback i*¢q of ¢q is a deformation of ¢ over ' which is
equivalent to the deformation ¢gq.

Example 3.7. Suppose ¢ is the Z/p-Galois cover y? —y = u 7. T he deformations
y? —y = u™d + tu=? over Spec(k[[t]]) and y* —y = u™? + su~! over Spec(k][s]])
are equivalent. In this case, m : Spec(k[[s]]) — Spec(k[[t]]) is given by ¢ +— s and
7' : Spec(k[[s]]) — Spec(k[[s]]) is the identity.

Likewise, suppose « (resp. ') is an element of Fay, .. () (resp. Fax,pun.0())
with associated cover 1, (resp. ¢/,). We say that o and o’ are equivalent if there
exists an object Q0 of ' along with finite purely inseparable (possibly trivial) mor-
phisms 7 : Q" — Q and 7’ : Q" — Q' so that the pullbacks 7*¢q and (7')* ¢ are
isomorphic covers of Xq.

Consider the contravariant deformation functor Fy, , (resp. F},) from C to sets
which associates to  the set of equivalence classes of deformations in F 4(€)
(resp. F(€)) where i : Q" — € is any finite purely inseparable morphism. Likewise,
consider the contravariant A-Galois functor Fy,, , , from C to sets which associates
to (2 the set of equivalence classes of covers in Fluy,,,, »(€') where i : Q" — Q is any
finite purely inseparable morphism. The functors F, F, 4 and F},, , . are defined

over the category C , but descend to functors on C’ since they associate an equivalence
class of deformations (or covers) to the equivalence class in C’ of an object €2 of C.
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Corollary 3.8. The functors Fj 4 and F,, , , are isomorphic.

Proof. This is automatic since the isomorphism in Theorem 3.3 is compatible with
finite purely inseparable morphisms. O]

3.4 A moduli space for A %, u,,-Galois covers

We construct a fine moduli space Max,p,, o for the functor F, ,  and give an
explicit formula for its Krull dimension. (The case when A = Z/p appears already
in [17, Thm. 2.2.10]). The Krull dimension can be computed using the following
formula which depends only on numbers which arise from the ramification filtration.

Definition 3.9. Given A x, p,, and o, let ¢ = |A| and let s, be as in Lemma 2.3.
Let n(A X, piy,,0) = #{ e NT| ¢t ¢, ¢/ gcd({,q) < mo, { = s, mod m}.

Definition 3.10. Let n = n(A X, jim, o). Let G, be the formal completion of the
group scheme G, at the origin. Consider the action of ¢ € F; on (G,)" so that

~

(o7 =(r. Let Max,u, o be the quotient of (G,)" by this action of F;.

Theorem 3.11. The functor F,, ,
dimension n(A X, iy, 0).

is represented by Max, ..o Which has Krull

o

Proof. To ease notation, let n = n(A X, i, 0), F' = Fiy,, ., and M = Mas, . 0-
Consider an object 2 of C’ and the equal characteristic complete local ring R = Oq,.
The following two properties imply that F” is represented by M.

i) There is a natural morphism 7" : F’(o) — Hom¢ (o, M);
ii) There is a morphism 7" : Home (o, M) — F’(o) which is an inverse to 7”.

For (i), suppose we are given o € F'(€2). Then « corresponds to the isomorphism
class of an A-Galois cover 1, of Xq where ' — € is a finite purely inseparable
morphism. As in Section 2.3, v, is given by an equation of the form v? — v = r,
where r, € R'[[z]][z!] and R’ = Og.

Within the isomorphism class of the cover 1,, there is a choice of equation
v! — v =), with v/, € 27'R'[z7"]. This follows from Lemma 2.4 since any element
r € R'[[z]] is of the form r = d? — d where d € R'[[z]] equals > ;° r?.

Within the equivalence class of 1),, there is a choice of equation v? —v =7 in
standard form. Namely, 7/ € 271 R"[x~!] and the coefficient of (z1)* in 7 is zero if
q|i. Here R" is a finite purely inseparable extension of R’. The reason is that after
a finite radicial extension, there is such an r so that v/, — r? = df — dy for some
dy € R"[z7']. The pullback of 1, to Q" = Spec(R") is isomorphic to v? — v = r/.

Let s be the conductor of v,. By definition, s < mo. By Lemma 2.2, s is the
prime-to-p degree of r,, One can show this is the same as the prime-to-p degree of
r”. This implies that the coefficient of (x=1)¢ in 7 is zero unless ¢/ ged(¢, q) < mo.
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By Lemma 2.3, the coefficient of (z71)* in r/ is zero unless ¢ = s, modulo m.
To summarize, the number of exponents ¢ so that the coefficient of (z71)¢ in 7 can
be non-zero is the cardinality of {¢ € N*| ¢ 1 ¢, ¢/gcd(¢,q) < mo, { = s, mod m},
namely n. The cover g, now yields a morphism Q" — (@a)" using the coefficients
of (x71)¢ from the polynomial 7”/. This yields a morphism f, : Q" — M.

The morphism f, is well-defined and uniquely determined by «. First, the image
of f, lies in M since the closed fibre of v, is isomorphic to ) ,. Second, f, does not
depend on the choice of 7. The reason is that if v —v; = r1(x) and v] — vy = ro(2)
are in standard form, then Lemma 2.4 implies that the corresponding A-Galois
covers t; and 1), are isomorphic if and only if ro(z) = (r(z) for some ¢ € F}.

In the category C’ (but not in the category C), the morphism f, descends to a
morphism Q — M. Define T"(a) = f, € Home: (2, M).

Conversely, for (ii), suppose f € Home (2, M). In other words, suppose f :
Q' — M where ) is a finite purely inseparable extension of 2. Consider a lifting
of f to (G,)". Define ' € o7 R'[z~"] using the coordinates of the '-point for the
coefficients of the terms (z71)¢ for {¢ € N*| ¢ 1 ¢, ¢/ gcd({,q) < mo, £ = s, mod m}.
By analogous arguments as for (i), the polynomial r} yields a cover ¢f o in standard
form. By Lemma 2.4, the cover 1y o does not depend on the choice of lifting of f.
Let T'(f) to be the equivalence class of 1o in F'(2).

The morphisms 7" and 7" are functorial and inverses of each other. Having
verified conditions (i)-(ii), it follows that M represents the functor F” on the category
C’. The moduli space is a scheme of Krull dimension n. O]

3.5 Application to [3]: Inertia (Z/p)° %, i,

Suppose I = (Z/p)¢ X, pr, and ¢ : Yy, — Uy is an I-Galois cover of normal irreducible
germs of curves. This type of inertia group occurs when one studies covers of
projective curves which are ordinary. In Corollary 3.12, we use Theorem 3.11 to
describe the moduli space parametrizing deformations of ¢ and give an exact formula
for its Krull dimension. This corollary is a generalization of the dimension count of
[3, Theorem 5.1(a)] in which the restriction that the lower jump is 1 is removed.

Corollary 3.12. Suppose I = (Z/p)¢ X, py,. Let P; for 1 < ¢ < r be non-trivial
elementary abelian p-groups which are stable and irreducible under the action of
fm SO that I = (XI_1P;) X, f. Suppose ¢ : Y, — Uy is an I-Galois cover of
normal irreducible germs of curves with upper jump &; associated to g € P;. In
the category C', the functor F(; is represented by Xi_ i Mp, s yn.e:. which has Krull
dimension dy =Y i n(P; X, fiym, 55).

The formula for n(P; X, i, d;) is in Definition 3.9.

Proof. Given I = (Z/p)® X, fim, consider the morphism ¢ : u,,, — Aut((Z/p)¢). Since
p 1 m, Maschke’s Theorem implies that this representation is completely reducible.
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In other words, there exist non-trivial elementary abelian p-groups P; for 1 <1 <r
which are stable and irreducible under the action of p,, so that I = (XI_;P;) X, ftm.

Consider the P-Galois subcover ¢ : Y — X of ¢. For 1 <i <r,let¢; : V; - X
be the P;-Galois quotient of ¢”. Then Y; is invariant under the j,,-action and the
cover K o ¢; is P; X, un,,-Galois. The ramification filtration of k o ¢; has one jump,
which is &; in the upper numbering. The subgroup P; satisfies all the conditions of
Lemma 2.1 for the cover k o ¢;.

Consider the functor Féo@ parametrizing equivalence classes of deformations
of kK o ¢;. The u,,-Galois quotient of any such deformation must be constant so
Fl oy, = Flop, p,- The latter functor is isomorphic to Fp,,, = by Corollary 3.8. By
Theorem 3.11, in the catagory C’, the moduli space representing this last functor is
Mp, s, jm5; Which has Krull dimension n(P; X, fiy,, &;).

The P-Galois subcover ¢ : Y — X of ¢ is the fibre product of the covers
o; Y, — X. Giving a deformation of ¢ is equivalent to giving a p,,-invariant
deformation of ¢ which is equivalent to giving deformations of the collection of
covers o ¢; for 1 <4 < r. Thus the moduli space representing the functor Fy is
the direct product of the moduli spaces representing the functors F b O

Remark 3.13. In [3], Cornelissen and Kato study a functor of deformations of a
germ Y with a wildly ramified action p : I — Aut(Y) of the type occuring when
Y is the germ of a smooth projective ordinary curve. They compute the formal
deformation space of the functor. In particular, they find its pro-representable
hull H, and compute its Krull dimension d,. They also find the tangent space of
the deformation functor and compute its dimension. The latter dimension may be
larger than d, due to the presence of nilpotent elements coming from obstructed
deformations, i.e. liftings of (Y, p) to k[t]/t* which do not lift to k[[¢]].

Apriori, the branch locus might split under deformations of (Y, p). However, it
is impossible for the branch locus to split in the ordinary case since the lower jump
of a wildly ramified cover cannot be smaller than 1.

The next corollary reproves the dimension count of [3, Theorem 5.1(a)]. A careful
analysis shows that the results agree when d, +1 = d,; (or d, = dy4 in the case p = 2
and e = 1). One can check that the results agree except when p = 2, m = 1, and
e > 1. The calculation of [3, 4.4.3] does not appear to be accurate when p = 2,
m=1, and e = 2.

Corollary 3.14. Suppose ¢ is the germ of a cover of smooth projective ordinary
curves. Suppose the inertia group I of ¢ has order p®m with p + m. Let ¢ =
[Fy(Cm), Fpl. Then Fj is represented by a scheme of Krull dimension dy = e/c.

Proof. The ordinary hypothesis forces the second ramification group in the lower
numbering to be trivial, [15, Thm. 2(i)]. Thus [ is of the form (Z/p)¢ x,Z/m by |20,
IV, Cor. 3-4]. The proof now rests only on these two facts and not on the ordinary
hypothesis itself.
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By Maschke’s Theorem, there exist non-trivial elementary abelian p-groups F;
for 1 < ¢ < r which are stable and irreducible under the action of u,, so that
I = (xI_yP) %, ft,. The upper jump of ¢ for g € P; is 5; = 1/m by Herbrand’s
formula. By Corollary 3.12, in the category C’, the functor F is represented by
X5 M p, s .1 /m Which has Krull dimension dy = >""_; n(P; X, fin,, 1/m).

Let x be the u,,-Galois quotient of ¢. The conductor of the P;-subquotient of ¢
is s = 1. Thus the integer associated to x and the group P; X, i, in Lemma 2.3 is
s,; = 1. Lemma 2.3(ii) implies that |P;| = p° for 1 <i <rsoe=cr.

Now n(P; X, frm, 1/m) = #{ € NT| pt £, £/ ged(¢,p) <1, £ =1mod m}. The
condition ¢ < ged(4, p©) implies that £ = p® for some b € N*. Then p® = 1 mod m if
and only if ¢[b. Thus n(P; X, fm,1/m) =1for 1 <i<randd, =e/c. O

4 Towers of deformations

In Section 4.2, we give upper and lower bounds for the Krull dimension dg4 of the
moduli space parametrizing equiramified deformations of ¢ in the category C’'. These
bounds depend only on the ramification filtration of ¢. We show that the upper
bound is realized in the case when [ is an abelian p-group in Section 4.3.

The proof involves the study of deformations of towers of covers using Corollary
3.8 and Theorem 3.11 along with induction. The crux issue is whether it is possible
to construct a deformation of ¢ which dominates a given deformation of ¢ and which
is still equiramified. We reformulate this issue as an equiramified embedding problem
in Section 4.1. The upper bound for d; is realized when [ is an abelian p-group since
the equiramified embedding problem has a solution when I is a cyclic p-group. The
upper bound for d, is not always realized since the equiramified embedding problem
does not have a solution in general.

Here is a basic explanation of this issue. Every P-Galois cover ¢ of X is a tower
of Artin-Schreier equations y? — y; = r;. Every deformation of ¢ which maintains
the P-Galois action has the form y? — y; = r; 4+ r,; for some r,,; € Oq [x7Y. If the
deformation is equiramified then the prime-to-p degree of each r,; in ' is bounded
by the corresponding upper jump in the ramification filtration. The converse is true
if P is cyclic, but is false in general. Namely, one can not guarantee that the
deformation is equiramified by placing bounds on the degree of each r,;. Section
4.5 contains an example of this phenomenon for deformations of a supersingular
elliptic curve in characteristic 2 with an action by the quaternion group.

4.1 An equiramified embedding problem.

The following problem arises in constructing deformations of towers of covers.

Definition 4.1. An equiramified embedding problem consists of the following data:
~a group I = P X, yu,, with |P| = p® and p 1 m;
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- a subgroup A C [ satisfying the conditions of Lemma 2.1;
- an I-Galois cover ¢ : Y — U, of normal irreducible germs of k-curves;
- a pointed k-scheme (€2, w);
- an equiramified deformation @, of the I/A-Galois quotient of ¢ over (Q,w).
A solution to the equiramified embedding problem consists of an equiramified
deformation ¢q of ¢ over (Q,w) which dominates ¢,.

Lemma 4.2. Given an equiramified embedding problem over (2,w), the subscheme
Q' of Q over which the problem has a solution is non-empty and closed.

Proof. We see that €' is non-empty since it contains w. It is closed since the equiram-
ified condition depends only on the generic point of €. O]

Every equiramified embedding problem for cyclic p-group covers has a solution
using class field theory. We use this in Section 4.3 to find the Krull dimension of
the moduli space representing equiramified deformations of abelian p-group covers.

Lemma 4.3. Any equiramified embedding problem for which I is a cyclic p-group
has a solution.

Proof. By hypothesis, I ~ Z/p¢ for some e > 1. Let oy, ...,0, be the upper jumps
of ¢. Recall from [19] (see also [16, Lemma 19]) that the upper jumps of a cyclic
cover satisfy the following condition: either 0,11 = po; or 0,41 > po; and p 1 o;4;1.

If A satisfies the conditions of Lemma 2.1, then A is the last non-trivial higher
ramification group 17 of ¢ and A ~ Z/p. The I /A-Galois quotient cover ¢ : Y — X
of ¢ is a Z/p*~!-Galois cover of normal irreducible germs of curves. The ramification
filtration of ¢ has upper jumps o1, . .. ge_1.

Consider the given equiramified deformation ¢, of ¢ over (Q,w). The fibre of
¢ over w is isomorphic to ¢. By [1, X, Theorem 5.1], there exists a Z/p°-Galois
cover @5, dominating ¢, whose branch locus is &,. One can choose ¢}, so that its
conductor s” over the generic geometric fibre of € is minimal among all Z/p®-Galois
covers dominating ¢q. By [16, Lemma 19], s’ = po._;. Thus o, > 5.

Consider the restriction ¢’ of ¢, over w. Then ¢’ differs from ¢ by an element
a € Hom(m(X}),Z/p) by [16, Lemma 3]. Let s be the conductor of a. If ¢’ is
reducible then s = o, by [16, Lemma 9]. If ¢ is irreducible, let s” be the conductor
of its normalization. Then s” < s’ since conductors decrease under specialization
and s < s” by [16, Lemma 19]. So s” = §'. In this case, s = max{s’, 0.} = 0. by
[16, Proposition 7].

Let ap q be the constant deformation of v over €. Let ¢q be the cover ¢, modified
by the action of ag . The restriction of ¢q over the closed point of €2 is isomorphic
to ¢. By [16, Proposition 7], o, is the conductor of ¢q over the generic geometic
fibre of 2. Thus ¢q is a solution to the equiramified embedding problem. O]

Section 4.5 contains an example of an equiramified embedding problem which
does not have a solution for the non-abelian quaternion group of order 8.
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4.2 Equiramified deformations of arbitrary covers

Suppose I = P X, pi,,, with |P| = p® and p t m. In this section, we consider
equiramified deformations of an I-Galois cover ¢ : Y, — Uy of normal irreducible
germs of k-curves. We use Corollary 3.8 and Theorem 3.11 to find an upper and lower
bound for the Krull dimension d4 of the moduli space parametrizing deformations
of ¢ in the category C’.

The cover ¢ can be factored into a tower of covers using its ramification filtration.
The bottom step of the tower is the pu,,-Galois cover k : X — U. Suppose o, ..., 0,
are the jumps in the ramification filtration I of ¢ in the upper numbering. The
Galois groups of the other steps of the tower are elementary abelian p-groups, namely
the quotients [7:/17+' of higher ramification groups. We now modify the indexing
of the ramification filtration of ¢ to make sure that these quotients are irreducible
under the action of p,,.

Let 1 C A, C A,_,... C A} = P be the distinct subgroups of P occuring in the
sequence of higher ramification groups of ¢. Then A’ is normal in I so the action of
tm stabilizes A.. Also A} is normal in A, and the quotient is a non-zero elementary
abelian p-group.

Definition 4.4. The reduced ramification filtration of ¢ is a refinement 1 = A,y C
A, C A,_1...C Ay = P of the sequence of distinct subgroups occuring in the ram-
ification filtration satisfying the property that A;/A;,; is nontrivial and irreducible
under the action of p,,. The reduced set of upper jumps of ¢ is the set {7; | 1 < < r}
where ; is the upper jump associated to g € A; — A; ;1.

The set {7; | 1 <i <r}is asubset of {o; | 1 <i < e}. The multiplicity of the
jump o; in the reduced set of upper jumps is equal to the length of the composition
series of the p,,-module [7/[7+1,

Since A;;1 is normal in I, the quotient cover ¢; of ¢ by A;,1 is I/A;+1-Galois for
1 <i <r. Then A;/A;;; satisfies all the conditions of Lemma 2.1 with reference
to the cover ¢;. For example, A;/A;,; is in the last non-trivial higher ramification
group of ¢;. Let ¢; = |A;/Ai4].

By Lemma 2.3, there is a well-defined choice of s,; determined from the ji,,-
Galois quotient k of ¢ and the group (A4;/A;11) X, ftm. As in Definition 3.9, let
n; = n((Ai/Ais1) Xofim, 0;) = #{ € NT| g t £, £/ ged (€, ¢;) < méy, £ = s,; mod m}.

Remark 4.5. By [16, Lemma 6(i)], the integers s,; can also be determined from
the ramification filtration of the I-Galois cover ¢. For example, if ¢ has last lower
jump je, then s,, = j./|P| mod m.

Theorem 4.6. Suppose ¢ : Y, — Uy is an I-Galois cover of normal irreducible
germs of curves with reduced set of upper jumps o1, .. .0, in its reduced ramification
filtration A, C A,_i... C Ay. In the category C', the functor F(; is represented
by a subscheme My of Xi_ M (a,/4;11)%um.5: wWhose Krull dimension dy satisfies
n, <dy <D i

i+1)
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We expect that an exact formula for d, will depend on the ramification filtration
of ¢ but not upon ¢ itself. When m = 1, the upper bound for d, is > ;_, |0:]—[0:/p].

Proof. The proof is by induction on r. If r = 1, the result is immediate from
Corollary 3.8 and Theorem 3.11.

Forr > 1, let A = A, be the smallest subgroup in the reduced ramification filtra-
tion for ¢. Let I = I/A = P/A %, jt,,. Consider the I-Galois quotient ¢ = ¢,_; of ¢.
All information about ¢ which is relevant for ¢ is preserved under this quotient.
Namely, ¢ has reduced ramification filtration A,_;/A, C A,_s/A.... C Aj/A,
and reduced set of upper jumps 71,...0,_1. By the third isomorphism theorem,
(Ai/A,) /(A1 /A) = AiJAiq for 1 <@ <r —1. As a result, the numbers s,; and
n; are the same for ¢ and 5 forl1<i<r—1.

By the inductive hypothesis, in the category C’, the functor Fé is represented by

a subscheme My of XTI M (/A1) 0,5 Whose Krull dimension dg satisfies n, 1 <
dg < 2:;11 n;. Consider the universal I-Galois deformation ¢ M YMg — U M; of ¢
corresponding to this moduli space. _

Consider the equiramified embedding problem determined by ¢ M and ¢. Let

M be the subscheme of M5 over which it has a solution. By Lemma 4.2, M is non-
empty and closed and thus its irreducible components have Krull dimension between
0 and Z:;ll n;. Let ¢z7 be a solution to the equiramified embedding problem over
M. The conductor of ¢34 over the generic point of M is &, by definition. The
restriction of ¢ to w is isomorphic to ¢ by definition.

By Corollary 3.8 and Theorem 3.11, the functor F}, , is represented by M a, s, 1, 5 -
Consider M, = Mx My, sopim,e - Lhen Mg is a subscheme of X7_; M4, /4., )5, .54
and the Krull dimension of each of its componenets is between n, and 22:1 n;. We
will show that M, represents the functor F in the category C'.

First, there is a non-canonical morphism 7" : F(o) — Homes(o, My). To see
this, let © be an object of C' and consider ¢q € F(f2). Let ¢ be the I-Galois
quotient of ¢g. By the inductive hypothesis, (after inverting by a finite radicial
morphism) ¢¢ determines a unique morphism f; : Q — M. The image of fi is in
M since ¢, can be dominated by the equiramified deformation ¢q.

Consider the I-Galois cover f]¢yz of relative (2-curves. There exists an element

a € Hy(M) = Homypg(m (X7;), A) so that the action of o takes fydzz to ¢ by

[16, Lemma 3]. Then o € H4(M) by [16, Lemma 5]. Then o € H4™" since the
conductor of a is at most ma, by [16, Proposition 7]. Finally, a € F} (M) because
fidwg and ¢q are both isomorphic to ¢ over w.

By Theorem 3.11, o determines a unique morphism fs : @ — My, w4, 5, in the
category C'. Let f = (f1, f2). The conclusion is that, in the category C’, there is a
morphism f : Q — My. Let T"(¢q) = f. The morphism 7" is non-canonical since
it depends on the choice of ¢y

Secondly, there is a morphism 7' : Homer (o, My) — Fj(o) which is an inverse
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to T'. To see this, let f : 2 — M, be an element of Home (o, My). This yields
morphisms f; : @ — M and f, : Q — M, s .- Then fiomg € F(;(Q) is an
equiramified deformation of ¢ over ). In particular, f{ ¢y is an I-Galois cover of
Uq whose fibre over w is isomorphic to ¢. By Corollary 3.8 and Theorem 3.11, fo
determines an element ag of F,, , () = Fj 4(€2). Define T'(f) to be the element
of F}(£2) obtained by the action of ag on fi¢zz.

The morphisms T and T” are functorial. It follows from the inductive hypothesis
and Theorem 3.11 that T" and T" are inverses. So My represents the functor F, of
equivalence classes of equiramified deformations of ¢ on the category C'. [

Remark 4.7. In [7], Harbater constructs a moduli space Mp for P-Galois covers of
germs of curves. The moduli space in this paper is different in several respects. First,
the inertia group [ in this paper can be a cyclic-by-p group (not just a p-group).
Second, in [7] the author uses an equivalence only under étale pullbacks so that Mp
can be defined over the category of schemes. Third, in [7] there is no equivalence
between covers under inseparable pullbacks, so Mp is highly singular. Finally, in [7],
the author considers deformations of étale covers of punctured curves. With these
deformations, there is no bound for the jumps in the ramification filtration on the
generic fibre. As a result, Mp is infinite-dimensional. In contrast, the moduli space
in this paper is finite-dimensional.

A versal deformation space for non-Galois wildly ramified covers of germs of
curves is constructed by Fried and Mezard in [5].

In [14], Kontogeorgis compares deformations of wildly ramified covers of germs
of curves to deformations of Galois representations.

4.3 Equiramified deformations of abelian p-group covers

Suppose [ is an abelian p-group. Suppose ¢ : Y, — Uy is an [-Galois cover of
normal irreducible germs of k-curves with upper jumps oy, ... o, in its ramification
filtration. We describe the moduli space parametrizing deformations of ¢ and give
an exact formula for its Krull dimension in terms of the upper jumps. The case when
I is an abelian p-group is simpler than the general case due to class field theory.

Corollary 4.8. Suppose I is an abelian p-group. Suppose ¢ :' Y — Uy is an I-Galois
cover with upper jumps o1, ...,0.. In the category C', the functor F(; 1s represented
by x¢_1 My, which has Krull dimension dg = _,(0; — |0:/p]).

Proof. Since an abelian p-group is the direct product of cyclic p-groups, the cover ¢
is a fibre product of a collection of covers whose inertia groups are cyclic p-groups.
The functor of (equiramified) deformations of ¢ is equivalent to the product of the
functors of (equiramified) deformations of this collection of cyclic quotients. The
ramification filtration and its jumps in the upper numbering are preserved under
quotients. The proof thus reduces to the case that I ~ Z/p°.

The cyclic case uses induction on e; the case e = 1 is covered by Theorem 3.11.
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Let A be the last non-trivial higher ramification group 17¢ of ¢. Since o, > po._1,
it follows that A ~ Z/p and that A satisfies the conditions of Lemma 2.1. The I/A-
Galois cover ¢ : Y — U, is a Z/p°~'-Galois cover of normal irreducible germs of
curves. Then ¢ has upper jumps o1, . ..0._; in its ramification filtration.

Applying the inductive hypothesis to ¢, in the category C’, the functor Fé is
represented by X{_{ Mz, ., which has Krull dimension dg = S n(Z/p,0:). The
cover ¢ and the universal I-Galois deformation of ¢ corresponding to this moduli
space determine an equiramified embedding problem. By Lemma 4.3, this equiram-
ified embedding problem has a solution over x{-{ Mgz, .. By Theorem 3.11, the
functor of deformations of ¢ with constant //A-quotient deformation is represented
by Mz/po, in the category C'. It follows from the proof of Theorem 4.6 that Fy is
represented by x§_; Mgy, ,, in the category C'.

The Krull dimension dg of xX§_ Mgy, is > . n(Z/p,0;). By Definition 3.9,
n(Z/p,o0;) = #{¢ € N*| £ < g;, pt{}. The Hasse-Arf Theorem implies that o; € N.
Thus dy = >7;_(0i — o3/p]). O

Example 4.9. A minimal (Z/p®)-Galois action.

There exists a Z/p-Galois cover ¢ : Yy — Uy of normal irreducible germs of k-
curves whose ramification filtration has upper jumps {1,p,p?, ...,p '}. This is the
smallest possible sequence of upper jumps for a Z/p®-Galois cover. By Theorem 4.8,
the Krull dimension of the moduli space parametrizing equiramified deformations

of ¢ is dy = p°~'. This is because dy = > 5, n(Z/p,p" ") => ¢ (p" "t — p'?).

Remark 4.10. In [2, Proposition 4.1.1], the authors consider deformations of a
Z/p*-Galois action on a germ of a curve over a local Artinian k-algebra of mixed
characteristic. They show that the dimension of the tangent space is |26/p¢| —
[3/p¢] where (3 is the degree of the discrimininant. Even for Z/p-covers, this shows
that not every deformation in equal characteristic lifts to a deformation in mixed
characteristic.

4.4 Future Application: the dimension of M [G] ®F,

Suppose ¢ : Y — X is a (wildly ramified) G-Galois cover of smooth projective
curves branched at B. If b € B, let d; be the Krull dimension of the moduli space
parametrizing deformations of the germ ¢, of ¢ above b. Theorem 4.6 gives an upper
and lower bound for d, in terms of the reduced set of upper jumps of the reduced
ramification filtration for ¢,. Using formal patching, one can show that ), . ds
is the Krull dimension of the component of the Hurwitz space for wildly ramified
covers of X branched at B which contains ¢.

Let p : G — Aut()) be the action associated to ¢. Consider the component
of the moduli space M [G] ® F,, of curves of genus ¢g with an action by G' which
contains (Y, p). The dimension dy , of this component is larger than ), . d, for
several reasons. When studying M,[G] ® F,, one must consider deformations of
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(Y, p) for which the base curve X, the branch locus B, and even the size of B do not
remain constant. In particular, the branch locus will be a relative Cartier divisor of
fixed degree on the relative curve Xg.

At this time, it appears that the dimension of M [G] ® F,, is known only in the
case that G = Z/p. The computation of dy , in this case relies on the corresponding
computation of the dimension d,. For example, in [2, Section 5.2], the authors
consider (), p) so that the associated cover ¢ is a Z/p-Galois cover of the projective
line branched at only one point b with inertia Z/p and lower jump j. Here ) has
genus g = (p—1)(j—1)/2. They investigate deformations of (), p) for which the one
branch point b splits into h branch points by, ..., b, with lower jumps jy,,...,J,-
They use the dimension d,, = j», — | J, | to show that the component of M,[Z/p|QF,
containing (), p) has dimension j — 2.

For this reason, we expect that the formula for d, from Theorem 4.8 can be
used to determine the dimension of the component of M [G] ® F,, containing (}, p)
when G = Z/p® and that an analogous formula will be necessary to compute this
dimension in the general case.

4.5 Example: A minimal quaternion-Galois action.

We consider deformations of a supersingular elliptic curve with quaternion group
action. Let k£ be an algebraically closed field of characteristic p = 2. Let (3 be a root
of 22+ x+11in k. Let Dg = {1, u, 7, u7, [—1], [-1]p, [=1]7, [~1]u7} be the quaternion
group of order 8. We consider deformations of a Dg-Galois cover of the projective
line branched at only one point with minimal ramification filtration.

Lemma 4.11. The cover ® : Y — PL given by the following equations has Galois
3

group Dg: v* —v =u; w* +w =v; y* —y = w’.
Proof. Define the action of pu by pu(v) = v, p(w) =w+ 1, u(y) =y +w + (3. Define
the action of 7 by 7(v) =v+ 1, 7(w) = w + (3, 7(y) =y + w(¢3 + 1) + (3. One can
check that [—1] = p? = 72 fixes v and w, and [-1](y) = y+1, and pr = [-1]7p. O

Lemma 4.12. The cover ® is branched at only one point, where it is totally ramified.
The jumps in the ramification filtration in the lower numbering are 1,1,3 and in the
upper numbering are 1,1,3/2. The curve Y is a supersingular elliptic curve.

Proof. By the Jacobian criterion, the cover & is étale over k[t]. Since Dy is a 2-
group, ® must be totally ramified over co. The lower jumps are the absolute values
of the valuations of u, v, and w? in respectively k[u=!], k[v™!], and k[w™!]. The
calculation of the upper jumps follows from Herbrand’s formula. The curve Y has
genus 1 by the Riemann-Hurwitz formula, [11] [20, IV, Prop. 4], and is supersingular
by the During-Shafarevic formula, [4]. ]

Recall that there is a unique elliptic curve which is a Dg-Galois cover of the
projective line and that this cover can be modified by a two-dimensional family
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of affine linear transformations. The resulting two-dimensional family of covers is
isotrivial. We now describe these deformations explicitly.

Proposition 4.13. The equations v? —v = u + aju; w? +w = v + agu; y> —y =
w3 + asu yield a family of Dg-Galois covers of the projective line specializing to ®
at (ay,a9,a3) = (0,0,0). The normalization of a fibre of this family yields a smooth
connected curve as long as a; # —1 and as/(ay + 1) is not a root of x*> +x + 1. This
curve has genus 1 if ao =0 or as = a; + 1 and genus 2 otherwise.

Proof. One can define the action of ;1 and 7 on the variables v,w, and y exactly as in
the proof of Lemma 4.11. It follows that this is a Dg-Galois cover of relative curves
over k[ay, as, as] which specializes to ® when (aq, as, as) = (0,0,0).

Consider the normalization of a fibre of this family over some geometric point
(a1, as,as). We denote this cover Y — W — V — P! where each of the three steps
in this tower is a degree two Artin-Schreier extension branched at exactly one point.
We will investigate each of the curves V', W and Y to see whether Y is connected.

The cover V — P! is given by the equation v?> — v = (a; + 1)u. This equation is
in standard form and one sees that V' is disconnected if and only if a; = —1. Let us
suppose that V is connected, in which case it is a smooth curve of genus 0. Also,
v~! is a uniformizer of V at its ramification point.

The cover W — V is given by w?+w = v+ayu = v+ (v —v)ay/(a;+1), which is
not in standard form since the exponents of v are not all odd. To determine whether
W is connected we will change this equation into standard form. (This destroys the
Ds-Galois structure of the tower.) After a purely inseparable extension, there exists
an element ¢; so that ¢ = ag/(a; +1). Let co = 1+ ¢; + . The Z/2-cover
W — V is isomorphic to the Z/2-cover Wi — V with equation w? 4+ w; = vey. The
isomorphism identifies w with w; +cyv. It follows that W is disconnected if and only
if ¢c; = 0 which is equivalent to the condition that as/(a; + 1) is a root of 2 +z + 1.
Let us suppose that W is connected, in which case it is a smooth curve of genus 0.

We now consider the cover Y — W ~ W;. The element w; ' is a uniformizer of
W, at its ramification point. One can check that v = (w} — wy)/co. This implies
that w = czw? + cqw; where ¢3 = ¢;/co and ¢y = 1 — ¢;/cy. We note that c3 and
¢y are defined under the restrictions on a; and as and are not simultaneously zero.
One can also check that azu has degree 4 in the variable w;.

The equation y? — y = w? + asu for the cover Y — W yields an equation
y? —y = (c3w} + cqwy)? + azu for the cover Y — Wi. After putting this equation
in standard form, its leading terms are (c2c)w® + (3 + ¢&/*)w?. The fact that this
equation is non-constant implies that Y is connected whenever W is.

The lower jump of Y — U equals the degree of this equation; in other words, it
is 3 if c3c4 = 0 and is 5 if c3c4 # 0. We see that ¢3 = 0 if and only if as = 0 and
cy = 0 if and only if ay = a; + 1. It follows that Y is a smooth curve of genus 1 if
as = 0 or as = a; + 1 and of genus 2 otherwise. O
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Corollary 4.14. Let R be an equal characteristic complete local ring. Fvery equiram-
ified deformation of ® over R is isomorphic to a fibre of the family v —v = u+au;
w? +w =wv; y? — y = w® + agu where a; and az are in the maximal ideal of R.

Proof. By Theorem 4.6, an equiramified deformation corresponds to a fibre of the
family in Proposition 4.13 for which a4, as, a3 are in the maximal ideal of R. Then
as # a; +1s0ay =0. [

This corollary is relevant to the study of deformations of germs of curves (rather
than projective curves) by the theorem of Katz-Gabber [13]. Let ® be the germ of
the cover ® above u = oo. By Theorem 4.6, n3 < dg < n; + ng + n3. By Definition
39, n=ny=#{ eNT (<1, 24¢} =1landng=#{{ € NT| £ <3/2, 21(} = 1.
So 1 < dz < 3. In fact, one sees that dg = 2 using the two-dimensional family of
deformations of ® from Corollary 4.14.
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